Canonical protein phosphatase 2A (PP2A) consists of a catalytic subunit (C), a scaffolding subunit (A), and a regulatory subunit (B). The B subunits are believed to confer substrate specificity and cellular localization to the PP2A complex, and are generally divided into three non-related families in plants, i.e., B55, B' and B''. The two Arabidopsis B55 subunits (α and β) interact with nitrate reductase (NR) in the bimolecular fluorescence complementation assay in planta, and are necessary for rapid activation of NR. Interestingly, knockout of all four B55 alleles is probably lethal, because a homozygous double knockout (pp2a-b55αβ) could not be found. The B55 subunits, therefore, appear to have essential functions that cannot be replaced by other regulatory B subunits. A double mutant (pp2a-b'αβ) of two close B' homologs show severely impaired fertility, pointing to the essential role also of B' subunits in plant development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260727PMC
http://dx.doi.org/10.4161/psb.6.8.16180DOI Listing

Publication Analysis

Top Keywords

protein phosphatase
8
regulatory subunits
8
b55 subunits
8
subunits
6
phosphatase regulatory
4
subunits starting
4
starting reveal
4
reveal functions
4
functions plant
4
plant metabolism
4

Similar Publications

Here, we present a protocol for assessing the impact of a chemogenetic manipulation in a subpopulation of the hypothalamic neurons on aging and lifespan control using a mouse model developed specifically for this purpose. We describe steps for stereotaxic viral injection and assess inter-tissue communication between protein phosphatase 1 regulatory subunit 17 (Ppp1r17)-expressing neurons in the dorsomedial hypothalamus and white adipose tissue. We then detail procedures for lifespan measurements following chemogenetic manipulation in aged mice.

View Article and Find Full Text PDF

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.).

View Article and Find Full Text PDF

Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.

View Article and Find Full Text PDF

During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!