Metabolic engineering of photosynthetic organisms is required for utilization of light energy and for reducing carbon emissions.Control of transcriptional regulators is a powerful approach for changing cellular dynamics, because a set of genes is concomitantly regulated. Here, we show that overexpression of a group 2 σ factor, SigE, enhances the expressions of sugar catabolic genes in the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Transcriptome analysis revealed that genes for the oxidative pentose phosphate pathway and glycogen catabolism are induced by overproduction of SigE. Immunoblotting showed that protein levels of sugar catabolic enzymes, such as glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glycogen phosphorylase, and isoamylase, are increased. Glycogen levels are reduced in the SigE-overexpressing strain grown under light. Metabolome analysis revealed that metabolite levels of the TCA cycle and acetyl-CoA are significantly altered by SigE overexpression. The SigE-overexpressing strain also exhibited defective growth under mixotrophic or dark conditions. Thus, SigE overexpression changes sugar catabolism at the transcript to phenotype levels, suggesting a σ factor-based engineering method for modifying carbon metabolism in photosynthetic bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162455 | PMC |
http://dx.doi.org/10.1074/jbc.M111.231183 | DOI Listing |
Phytopathology
January 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Biomic Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation, Aristotle University, Thessaloniki, Greece.
Metabolomics aims at identification and quantitation of key end point metabolites, basically polar, in order to study changes in biochemical activities in response to pathophysiological stimuli or genetic modifications. Targeted profiling assays enjoying a growing popularity over the last years with LC-MS/MS as a powerful tool for development of such (semi-)quantitative methods for a large number of metabolites. Here we describe a method for absolute quantitation of ca.
View Article and Find Full Text PDFJ Food Sci
January 2025
Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China.
Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography.
View Article and Find Full Text PDFTunis Med
January 2025
Department of Endocrinology and Internal Medicine, Fattouma Bourguiba Hospital, Monastir. Tunisia.
Unlabelled: Introduction-Aim: Type 2 diabetes (T2D) is a major public health problem. To succeed its management and prevent its complications, good therapeutic adherence must be ensured. The objectives of our work were to estimate the prevalence of poor therapeutic adherence in our patients and to identify its associated factors.
View Article and Find Full Text PDFPhysiol Plant
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.
UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!