Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a Galα1,3Gal/GalNAc-specific lectin from the fairy ring mushroom that consists of an N-terminal ricin B-type lectin domain and a C-terminal dimerization domain. The latter domain shows structural similarity to catalytically active proteins, suggesting that, in addition to its carbohydrate-binding activity, MOA has an enzymatic function. Here, we demonstrate toxicity of MOA toward the model nematode Caenorhabditis elegans. This toxicity depends on binding of MOA to glycosphingolipids of the worm via its lectin domain. We show further that MOA has cysteine protease activity and demonstrate a critical role of this catalytic function in MOA-mediated nematotoxicity. The proteolytic activity of MOA was dependent on high Ca(2+) concentrations and favored by slightly alkaline pH, suggesting that these conditions trigger activation of the toxin at the target location. Our results suggest that MOA is a fungal toxin with intriguing similarities to bacterial binary toxins and has a protective function against fungivorous soil nematodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162392PMC
http://dx.doi.org/10.1074/jbc.M111.258202DOI Listing

Publication Analysis

Top Keywords

marasmius oreades
8
oreades agglutinin
8
moa
8
agglutinin moa
8
cysteine protease
8
protease activity
8
lectin domain
8
activity moa
8
nematotoxicity marasmius
4
moa depends
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!