Purpose: Pioglitazone, a peroxisome proliferator-activated receptor (PPAR)-γ agonist, has anti-inflammatory and atheroprotective effects on vascular tissue and may reduce cardiovascular risk in patients with diabetes. The effect of pioglitazone on the retinal microvascular diameter was examined, and it was determined whether the effect depends on the endothelium and/or potassium channels in smooth muscle to reveal the signaling mechanisms involved in this vasomotor activity.

Methods: Porcine retinal arterioles were isolated, cannulated, and pressurized without flow in vitro. Video microscopic techniques recorded diametric responses to pioglitazone.

Results: The retinal arterioles dilated in a concentration-dependent (10 nM-10 μM) manner in response to pioglitazone and decreased by 60% after endothelium removal. The nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) inhibited pioglitazone-induced vasodilation comparable to denudation. Inhibition of soluble guanylyl cyclase (1H-1,2,4-oxadiazolo[4,3-a]quinoxalin-1-one), blockade of phosphatidylinositol (PI) 3-kinase (wortmannin), and pretreatment with compound C, an AMP-activated protein kinase (AMPK) inhibitor, were comparable to l-NAME. Pioglitazone-induced vasodilation also was inhibited by a nonselective K(+) channel blocker, tetraethylammonium, and a voltage-gated K(+) (Kv) inhibitor, 4-aminopyridine (4-AP). Treatment with intraluminal and extraluminal GW9662, a PPAR-γ antagonist, similarly inhibited pioglitazone-induced vasodilation. Co-administration of l-NAME and 4-AP almost eliminated pioglitazone-induced vasodilation.

Conclusions: Pioglitazone elicits endothelium-dependent and -independent dilation of retinal arterioles mediated by NO release and Kv channel activation, respectively. The NO-mediated dilation pathway probably occurs via activation of guanylyl cyclase, PI3-kinase/Akt, and AMPK signaling. Understanding the effect of pioglitazone on retinal vasculature may provide new insights into therapeutic advances for treating diabetic retinopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.10-6826DOI Listing

Publication Analysis

Top Keywords

retinal arterioles
16
pioglitazone-induced vasodilation
12
pioglitazone peroxisome
8
peroxisome proliferator-activated
8
porcine retinal
8
nitric oxide
8
potassium channels
8
pioglitazone retinal
8
inhibited pioglitazone-induced
8
guanylyl cyclase
8

Similar Publications

To measure the influence of ganglion cell layer (GCL) thickness on the changes in size and red blood cell (RBC) flow in small retinal vessels evoked by full-field flicker. We used a dual-beam adaptive optics scanning laser ophthalmoscope to image 11 healthy young controls in two retinal areas with significantly different GCL thicknesses. All capillaries and arterioles of the superficial vascular plexus were responsive to the flicker stimulation.

View Article and Find Full Text PDF

Systemic and Cardiac Microvascular Dysfunction in Hypertension.

Int J Mol Sci

December 2024

Dipartimento di Biotecnologie e Scienze della Vita, ASST Sette Laghi, Università degli Studi dell'Insubria, 21100 Varese, Italy.

Hypertension exerts a profound impact on the microcirculation, causing both structural and functional alterations that contribute to systemic and organ-specific vascular damage. The microcirculation, comprising arterioles, capillaries, and venules with diameters smaller than 20 μm, plays a fundamental role in oxygen delivery, nutrient exchange, and maintaining tissue homeostasis. In the context of hypertension, microvascular remodeling and rarefaction result in reduced vessel density and elasticity, increasing vascular resistance and driving end-organ damage.

View Article and Find Full Text PDF

The eye and the heart are two closely interlinked organs, and many diseases affecting the cardiovascular system manifest in the eye. To contribute to the understanding of blood flow propagation towards the retina, we developed a method to acquire electrocardiogram (ECG) coupled time-resolved dynamic optical coherence tomography (OCT) images. This method allows for continuous synchronised monitoring of the cardiac cycle and retinal blood flow dynamics.

View Article and Find Full Text PDF

Purpose: Previous in vitro studies on porcine retinal arterioles have shown that the frequency and amplitude of retinal vasomotion can be affected by hypoxia and nitric oxide (NO). However, it is unknown whether these effects can be reproduced in humans in vivo.

Methods: Video recordings of retinal arterioles from 40 healthy subjects were studied before and during breathing of a hypoxic gas mixture consisting of 12.

View Article and Find Full Text PDF

Retinal microvascular dysfunction in systemic sclerosis.

Microvasc Res

December 2024

Department of Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland; Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:

Background And Aims: Systemic sclerosis (SSc) is a systemic autoimmune disease, characterized by widespread microvasculopathy and fibrosis. Vascular and endothelial cell changes appear to precede other features of SSc. Retinal vascular analysis is a new, easy-to-use tool for the assessment of retinal microvascular function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!