Calpain, not caspase, is the causative protease for hypoxic damage in cultured monkey retinal cells.

Invest Ophthalmol Vis Sci

Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Beaverton, Oregon 97006, USA.

Published: September 2011

Purpose: Cell death occurring in human retina during AMD, high IOP, and diabetic retinopathy could be caused by activation of calpain or caspase proteolytic enzymes. The purpose of the present study was to determine whether calpains and/or caspase-3 were involved in cell death during retinal hypoxia in a monkey model.

Methods: Dissociated monkey retinal cells were cultured for two weeks and subjected to 24-hour hypoxia/24-hour reoxygenation. TUNEL staining and immunostaining for Müller and photoreceptor markers were used to detect which retinal cell types were damaged.

Results: Culturing dissociated monkey retina cells for two weeks resulted in proliferation of Müller cells and maintenance of some rod and cone photoreceptor cells, as identified by vimentin, recoverin, and rhodopsin immunocytochemical staining. Hypoxia/reoxygenation increased the number of cells staining positive for TUNEL. Immunoblotting showed that the calpain-specific 145 kDa α-spectrin breakdown product (SBDP) increased in hypoxic cells, but no caspase-specific 120 kDa α-spectrin breakdown product was detected. TUNEL staining and proteolysis were significantly reduced in the retinal cells treated with 10 and 100 μM calpain inhibitor SNJ-1945. Caspase inhibitor, z-VAD, did not inhibit cell damage from hypoxia/reoxygenation. Intact pro-caspase-3 was in fact cleaved by activated calpain during hypoxia/reoxygenation to pre 29 kDa caspase-3 and 24 kDa inactive fragments. No 17 and 12 kDa fragments, which form the active caspase-3 hetero-dimer, were detected. Calpain-induced cleavage of caspase was inhibited by SNJ-1945.

Conclusions: Calpain, not caspase-3, was involved in hypoxic damage in cultured monkey retinal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207712PMC
http://dx.doi.org/10.1167/iovs.11-7497DOI Listing

Publication Analysis

Top Keywords

retinal cells
16
monkey retinal
12
cells
9
calpain caspase
8
hypoxic damage
8
damage cultured
8
cultured monkey
8
cell death
8
caspase-3 involved
8
dissociated monkey
8

Similar Publications

Pathogenic mechanisms of immune checkpoint inhibitor (ICI)-associated retinal and choroidal adverse reactions.

Am J Ophthalmol

January 2025

Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI. Electronic address:

Purpose: To summarize and categorize postulated mechanisms of immune checkpoint inhibitor (ICI)-mediated retinal and choroidal inflammation and discuss resulting implications for evaluation and management of these adverse reactions.

Design: Targeted literature review with interpretation and perspective Methods: We performed a review of selected literature describing immune-mediated retinal and choroidal adverse reactions associated with ICI therapy, synthesizing and categorizing the likely underlying pathogenic mechanisms. Based on these mechanistic categories, we provide perspective on a rational approach to the evaluation of patients with ICI-associated inflammatory disorders of the retina and choroid.

View Article and Find Full Text PDF

Generation of the human iPSC line ESi132-A from a patient with retinitis pigmentosa caused by a mutation in the PRPF31 gene.

Stem Cell Res

December 2024

Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain.

Mutations in the PRPF31 gene are a well-known cause of autosomal dominant retinitis pigmentosa (RP), the most prevalent genetic form of blindness in adults, affecting 1 in 4,000 individuals globally. In this study, peripheral blood mononuclear cells from a patient carrying a heterozygous mutation in PRPF31 were reprogrammed to generate the human iPSC line ESi132-A. This cell line was thoroughly characterized for self-renewal and pluripotency.

View Article and Find Full Text PDF

SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues.

Genome Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.

Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells.

View Article and Find Full Text PDF

Nowadays, the use of monoclonal antibodies to target angiogenic signalling pathways is common, but, unfortunately, the clinical activity of these agents is limited. Thus, the development of approaches targeting multiple pathways for anti-angiogenic effect will lead to increase the clinical benefit. For this purpose, oleuropein, hesperidin, piperine, proanthocyanidins and retinoic acid, which have previously been proven to be bioactive components, anti-angiogenic performances were experimentally tested in retinal pigment epithelial cells.

View Article and Find Full Text PDF

Non-canonical roles of CFH in retinal pigment epithelial cells revealed by dysfunctional rare CFH variants.

Stem Cell Reports

December 2024

Department of Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany. Electronic address:

Complement factor H (CFH) common genetic variants have been associated with age-related macular degeneration (AMD). While most previous in vitro RPE studies focused on the common p.His402Tyr CFH variant, we characterized rare CFH variants that are highly penetrant for AMD using induced pluripotent stem-cell-derived retinal pigment epithelium (iPSC-RPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!