The objective of this study was to determine the effects of low-level laser light exposure on the motility of spermatozoa and on DNA damage. Thirty-three semen samples were collected for routine analysis and were classified as normospermic, oligospermic, or asthenospermic. After routine semen analysis was performed, residual semen was divided into treated and control aliquots. Treated samples were exposed to a 30-second infrared laser pulse of 50 mW/cm(2) at 905 nm, a wavelength thought to increase light-sensitive cytochrome c oxidase in the mitochondrial electron transport chain. Samples were then incubated at 37°C, and aliquots were analyzed at 30 minutes and 2 hours using computerassisted semen analysis. After incubation, 250 μL of each sample was frozen at 280°C until DNA fragmentation analysis by flow cytometry. A significant increase in motility, most prominent in oligospermic and asthenospermic samples (85% increase), was observed 30 minutes after the treatment (P < .0001). No significant increase in DNA damage compared with control samples was observed. Significant changes in sperm motion kinetics were observed. Low-level laser light exposure appears to have a positive short-term effect on the motility of treated spermatozoa and did not cause any increase in DNA damage measured at 2 hours. We conclude that some cases of asthenospermia may be related to mitochondrial dysfunction. The implications of this study in terms of future clinical applications needs further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2164/jandrol.111.013458 | DOI Listing |
Mol Plant
January 2025
State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:
It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Reproductive Medicine Center, Zhuhai Maternal and Child Health Care Hospital, 543 Ningxi Road, Zhuhai, 519000, China.
Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.
Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFNat Commun
January 2025
Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!