The X-ray repair cross complementing group 1 (XRCC1) protein is involved in DNA base excision repair and its expression varies during the cell cycle. Although studies have demonstrated that rapid XRCC1-dependent single-strand break repair (SSBR) takes place specifically during S/G(2) phases, it remains unclear how it is regulated during the cell cycle. We found that XRCC1 is a direct regulatory target of E2F1 and further investigated the role of XRCC1 in DNA repair during the cell cycle. Saos2 primary osteosarcoma cells stably transfected with inducible E2F1-wt or mutant E2F1-132E were treated with hydroxurea (HU) for 36h and were subsequently withdrawn HU for 2-24h to test whether cell-cycle-dependent DNA SSBR requires E2F1-mediated upregulation of XRCC1. We found that SSBR activity, as determined using a qPCR-base method, was correlated with E2F1 levels at different phases of the cell cycle. XRCC1-positive (AA8) and negative (EM9) CHO cells were used to demonstrate that the alterations in SSBR were mediated by XRCC1. The results indicate that E2F1-mediated regulation of XRCC1 is required for cell-cycle-dependent SSBR predominantly in G(1)/S phases. Our observations have provided new mechanistic insight for understanding the role of E2F1 in the maintenance of genomic stability and cell survival during the cell cycle. The regulation of XRCC1 by E2F1 during cell-cycle-dependent SSBR might be an important aspect for practical consideration for resolving the problem of drug resistance in tumor chemotherapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2011.05.006 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.
Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.
Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.
Leukemia
January 2025
Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany.
Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
According to recent research, with the ever-increasing use of Internet of Things (IoT) devices, there has arisen an ever-growing need for high-performance yet low-power circuits that can efficiently process information. Quantum-dot Cellular Automata (QCA) has emerged as a promising alternative to conventional complementary metal-oxide-semiconductor (CMOS) technology due to its great potential in digital design at nanoscale levels on account of very low power consumption and very high processing speed. However, QCA circuits are inherently prone to faults due to variations in manufacturing processes and due to the influence of environmental factors.
View Article and Find Full Text PDFCell Death Discov
January 2025
Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!