Preparation, spectral and biological investigation of formaldehyde-based ligand containing piperazine moiety and its various polymer metal complexes.

Spectrochim Acta A Mol Biomol Spectrosc

Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.

Published: October 2011

A novel tetradentate salicylic acid-formaldehyde ligand containing piperazine moiety (SFP) was synthesized by condensation of salicylic acid, formaldehyde and piperazine in presence of base catalyst, which was subjected for the preparation of coordination polymers with metal ions like manganese(II), cobalt(II), copper(II), nickel(II) and zinc(II). All the synthesized polymeric compounds were characterized by elemental analysis, IR, (1)H NMR and electronic spectral studies. The thermal stability was determined by thermogravimetric analysis and thermal data revealed that all the polymer metal complexes show good thermal stability than their parent ligand. Electronic spectral data and magnetic moment values revealed that polymer metal complexes of Mn(II), Co(II) and Ni(II) show an octahedral geometry while Cu(II) and Zn(II) show distorted octahedral and tetrahedral geometry respectively. The antimicrobial screening of the ligand and coordination polymers was done by using Agar well diffusion method against various bacteria and fungi. It was evident from the data that antibacterial and antifungal activity increased on chelation and all the polymer metal complexes show excellent antimicrobial activity than their parent ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2011.06.012DOI Listing

Publication Analysis

Top Keywords

polymer metal
16
metal complexes
16
ligand piperazine
8
piperazine moiety
8
coordination polymers
8
electronic spectral
8
thermal stability
8
revealed polymer
8
parent ligand
8
ligand
5

Similar Publications

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

Mastering the Copolymerization Behavior of Ethyl Cyanoacrylate as Gel Polymer Electrolyte for Lithium-metal Battery Application.

Angew Chem Int Ed Engl

January 2025

Beijing University of Chemical Technology, State Key Laboratory of Organic-Inorganic Composites, 15 North Third Ring Road East, 37830, Beijing, CHINA.

Polymers with strong electron-withdrawing groups (e.g., cyano-containing polymers) are attractive for a wide range of applications due to their high dielectric constant and outstanding electrochemical stability.

View Article and Find Full Text PDF

Solid-state polymer electrolytes (SPEs) have emerged as prominent candidates for solid-state sodium metal batteries (SMBs) due to their enhanced flexibility and reduced interfacial resistance. However, their performance is limited by poor Na+ conductivity at room temperature, disordered ion transport properties and unstable interfaces. Herein, a three-dimensional (3D) interconnected copper metal organic framework (Cu-MOF) on polyacrylonitrile (PAN) fibers is introduced into polyethylene oxide (PEO)-based SPEs to construct a composite electrolyte (PPNM).

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Psychiatry, University of Cambridge, Cambridge, UK.

Background: Combinations of blood-based biomarkers have been used to detect Alzheimer's disease (AD). While these markers provide information about neuropathology, they fail to integrate the cellular dysfunction, such as disease-associated defects in lysosomal ion homeostasis. To understand cellular dysfunction in AD and its relation to the pathophysiology of the disease, we developed a multi-modal biomarker diagnostic platform that incorporates lysosomal ionic pH and Ca and plasma levels of Amyloid beta (Aβ), Amyloid beta (Aβ), phosphorylated Tau181 (pTau181), Neurofilament light (NfL) and Glial fibrillary acidic protein (GFAP).

View Article and Find Full Text PDF

Breaking the Trade-Off Between Electrical Conductivity and Mechanical Strength in Bulk Graphite Using Metal-Organic Framework-Derived Precursors.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cm⁻¹, out-of-plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!