In this work we described the synthesis, the antileishmanial activity and the molecular modeling and structure-activity relationship (SAR) evaluations of a series of chalcone derivatives. Among these compounds, the methoxychalcones 2h, 2i, 2j, 2k and 2l showed significant antileishmanial activity (IC(50)<10 μM). Interestingly 2i (IC(50)=2.7 μM), 2j (IC(50)=3.9 μM) and 2k (IC(50)=4.6 μM) derivatives presented better antileishmanial activity than the control drug pentamidine (IC(50)=6.0 μM). Our SAR study showed the importance of methoxy di-ortho substitution at phenyl ring A and the relationship between the frontier orbital HOMO coefficients distribution of these molecules and their activity. The most active compounds 2h, 2i, 2j, 2k, and 2l fulfilled the Lipinski rule-of-five which theoretically is important for good drug absorption and permeation through biological membranes. The potential profile of 2j (IC(50)=3.9 μM and CC(50)=216 μM) pointed this chalcone derivative as a hit compound to be further explored in antileishmanial drug design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2011.06.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!