Mesoporous TiO(2) nanocontainers (NCs) covered with polyelectrolyte multilayers were adsorbed on self-assembled monolayer (SAM) modified gold substrates at different values of pH and ionic strength. The adsorption process was followed in situ by means of a quartz crystal microbalance (QCM) and the morphology of the adsorbate was investigated by means of FE-SEM images taken of the substrates after each adsorption process. Deposition could be achieved if either the particles and the surface had opposite charge, or if the salt concentration was sufficiently high, reducing the repulsion between the spheres and the surface. In the latter case the adsorption kinetics could be explained in the context of the DLVO-theory. Using conditions of like charges, one has a means to control the speed of deposition by means of ionic strength. However, interparticle aggregation and cluster deposition on the surface were observed at high ionic strength. Such conditions have to be avoided to obtain a uniform deposition of separated nanocontainers on the surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2011.06.018 | DOI Listing |
Sci Rep
December 2024
Laboratorio de Biotecnología y Estudios Ambientales, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Campus Los Ángeles, 4440000, Concepción, Chile.
Colobanthus quitensis is known for enduring extreme conditions, such as high salinity in Antarctica, making it an excellent model for studying environmental stress. In plant families, variations in seed color heteromorphism have been linked to various germination under stress conditions. Preliminary laboratory observations indicated that dark brown seeds of C.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
Salinity and lead are two important abiotic stresses that limit crop growth and yield. In this study, we assayed the effect of these stresses on tolerant and sensitive maize genotypes. Four-week-old maize plants were treated with 250 mM sodium chloride (NaCl) and 250 µM lead (Pb).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.
Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.
Appl Microbiol Biotechnol
December 2024
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the commercial membrane, despite being nearly half as thin. Ion conductivity measurements revealed that acrylamide-based membranes outperformed benzyl-based ones, exhibiting 25% and 41% higher conductivity when using crosslinkers with two and three crosslinking sites, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!