Complex I (CI) represents a major entry point of electrons in the mitochondrial electron transport chain (ETC). It consists of 45 different subunits, encoded by the mitochondrial (mtDNA) and nuclear DNA (nDNA). In humans, mutations in nDNA-encoded subunits cause severe neurodegenerative disorders like Leigh Syndrome with onset in early childhood. The pathophysiological mechanism of these disorders is still poorly understood. Here we summarize the current knowledge concerning the consequences of nDNA-encoded CI mutations in patient-derived cells, present mouse models for human CI deficiency, and discuss potential treatment strategies for CI deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mito.2011.06.011 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Mitodicure GmbH, Kriftel, Germany.
Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan.
Cadmium (Cd) is a toxic element and a widespread health hazard. Preventing its entry into crops is an outstanding issue. 3,4-Dihydroxy-L-phenylalanine (L-DOPA) is a non-proteinogenic amino acid that is secreted by a few legume plants and affects neighboring plants.
View Article and Find Full Text PDFCancer Res Treat
December 2024
Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.
Purpose: This study aims to investigate the role of Cytochrome b-245 chaperone 1 (CYBC1) in glioblastoma (GBM) progression, focusing on its involvement in reactive oxygen species (ROS) production and associated signaling pathways. Understanding the molecular mechanisms driven by CYBC1 could provide new therapeutic targets and prognostic markers for GBM.
Materials And Methods: Publicly available datasets were analyzed to assess CYBC1 expression in GBM and its correlation with patient survival.
In Silico Pharmacol
December 2024
Agro-Technology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam India.
A network pharmacology approach was used to construct comprehensive pharmacological networks, elucidating the interactions between agarwood compounds and key biological targets associated with cancer pathways. We have employed a combination of network pharmacology, molecular docking and molecular dynamics to unravel agarwood plants' active components and potential mechanisms. Reported 23 molecules were collected from the agarwood plants and considered to identify molecular targets.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China.
Background: Transient Receptor Potential Melastatin 4 (TRPM4), a non-selective cation channel, plays a critical role in cardiac conduction abnormalities. Brg1, an ATP-dependent chromatin remodeler, is essential for regulating gene expression in both heart development and disease. Our previous studies demonstrated Brg1 impacted on cardiac sodium/potassium channels and electrophysiological stability, its influence on TRPM4 expression and function remained unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!