Propofol is currently one of the most widely used intravenous anesthetic. In the present study, we investigated the effects of propofol on neuropathogenesis in newborn rats under hypoxic conditions. Seven-day old SD rats were assigned into one of the six treatments: propofol+50% oxygen (propofol-oxygen, PO), propofol+room air (propofol-air, PA), propofol+18% oxygen (propofol-hypoxia, PH), control group: lipid emulsion solvent+50% oxygen (CO), lipid emulsion solvent+room air (CA), lipid emulsion solvent+18% oxygen (CH). The rats assigned to anesthesia or control groups received intraperitoneally (ip) propofol 50 mg/kg or identical volume of lipid emulsion solvent (5.0 ml/kg) for seven days. SaO(2) (%) and respiratory rate (RR) were monitored throughout the procedures. The rats were decapitated 24h after 7 days exposure. TUNEL staining, Nissl staining, ultrastructural changes and the expression of caspase-3 in the brain tissues were assessed. We found propofol-induced attenuation of respiration could produce lower oxygen concentrations in the blood (hypoxia) under air or mild hypoxia conditions. Interestingly, in the presence of oxygen completely rescued hypoxia to normal levels, suggesting that propofol-induced respiratory depression led to hypoxia only under air or mild hypoxic conditions (propofol/hypoxia). In addition, propofol indirectly induced apoptosis through hypoxia resulting from respiratory depression under air or hypoxic conditions, which was determined by elevated expression of caspase-3, increased TUNEL-positive cells, ultrastructural changes of neuronal cell death and loss of Nissl staining neuronal in infant SD rat brains. However, in propofol-oxygen group and all control groups, no significant apoptosis were observed. These findings indicated that propofol per se or hypoxia per se did not directly induce significant apoptosis. However, propofol-induced attenuation of respiration could produce lower oxygen concentrations in the blood under air or mild hypoxia conditions and thereby result in neuronal degeneration. So, it is important to supply with supplementary oxygen during propofol anesthesia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2011.06.017 | DOI Listing |
J Exp Bot
January 2025
KU Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, 3001 Leuven, Belgium.
Tomato (Solanum lycopersicum L.) is an important model plant whose fleshy fruit consists of well-differentiated tissues. Recently it was shown that these tissues develop hypoxia during fruit development and ripening.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.
View Article and Find Full Text PDFAnal Chem
January 2025
Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
Total free thiols are an important marker of the whole-body redox state, which has been shown to be associated with clinical outcome in health and disease. Recent investigations have suggested that increased insight may be gained by monitoring alterations of redox state in response to exercise and hypoxia and to monitor redox trajectories in disease settings. However, conducting such studies is challenging due to the requirement for repeated venous blood sampling and intensive lab work.
View Article and Find Full Text PDFTh2 cells must sense and adapt to the tissue milieu in order to provide protective host immunity and tissue repair. Here, we examined the mechanisms promoting Th2 cell differentiation and function within the small intestinal lamina propria. Single cell RNA-seq analyses of CD4 T cells from the small intestinal lamina propria of helminth infected mice revealed high expression of the gene , encoding the transcription factor hypoxia-inducible factor 2a (HIF2α).
View Article and Find Full Text PDFBackground: For patients with head and neck squamous cell carcinoma (HNSCC), failure of definitive radiation combined with cisplatin nearly universally results in death. Although hyperactivation of the Nrf2 pathway can drive radiation and cisplatin resistance along with suppressed anti-tumor immunity, treatment-refractory HNSCC tumors may retain sensitivity to targeted agents secondary to synergistic lethality with other oncogenic drivers (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!