3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is a widely used recreational drug known to cause selective long-term serotonergic damage. In our recent paper we described region-specific, dose-dependent increase in the protein expression of astroglial Hsp27 and neuronal Hsp72 molecular chaperones after MDMA administration of rats. Here, we examined the possible interaction of elevated Hsp27 protein level to hyperthermic responses after MDMA administration and its separation from drug-induced serotonergic neurotoxicity. For this, 7-8 week old male Dark Agouti rats were treated with 15 mg/kg i.p. MDMA. Treatment at an ambient temperature of 22 ± 1°C caused a significant elevation of the rectal temperature, an increase of Hsp27 immunoreactive protoplasmic astrocytes in the hippocampus, the parietal and cingulate cortices, and a significant decrease in the density of tryptophan hydroxylase immunoreactive fibers in the same brain regions, 8h as well as 24h after drug administrations. In addition, serotonergic axons exhibited numerous swollen varicosities and fragmented morphology. MDMA treatment at low ambient temperature (10 ± 2°C) almost completely abolished the elevation of body temperature and the increased astroglial Hsp27 expression but failed to alter - or just slightly attenuated - the depletion in the density of tryptophan hydroxylase immunoreactive fibers. These results suggest that the increased astroglial Hsp27 protein expression is rather related to the hyperthermic response after the drug administration and it could be separated from the serotonergic neurotoxicity caused by MDMA. In addition, the induction of Hsp27 per se is uneffective to protect serotonergic fibers after MDMA administration. Our results also suggest that Tph immunohistochemistry is an early and sensitive method to demonstrate MDMA-caused vulnerability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2011.06.017 | DOI Listing |
Handb Clin Neurol
January 2018
Institute of Neurology, Medical University of Vienna, Vienna, Austria. Electronic address:
Major cell types of the central nervous system comprise neurons, glial cells (astrocytes, oligodendrocytes, ependymal cells, and microglia), choroid plexus cells, cells related to blood vessels and coverings. These cells show a wide range of reactions to various noxious agents, which can be detected in routine stainings. Some of these reactions are nonspecific to different injuries; however some, such as the appearance of inclusion bodies, can be highly disease-specific.
View Article and Find Full Text PDFNeurobiol Dis
October 2015
Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
Although gliosis is a normal response to brain injury, reports on the extent of astrogliosis in the degenerating substantia nigra in Parkinson's disease (PD) are conflicting. It has also been recently suggested that accumulation of nigral α-synuclein in this disorder might suppress astrocyte activation which in turn could exacerbate the degenerative process. This study examined brain protein levels (intact protein, fragments, and aggregates, if any) of astroglial markers and their relationship to α-synuclein in PD and in the positive control parkinson-plus conditions multiple system atrophy (MSA) and progressive supranuclear palsy (PSP).
View Article and Find Full Text PDFNeurochem Int
October 2011
Department of Pharmacodynamics, Semmelweis University, Budapest H-1089, Hungary.
3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is a widely used recreational drug known to cause selective long-term serotonergic damage. In our recent paper we described region-specific, dose-dependent increase in the protein expression of astroglial Hsp27 and neuronal Hsp72 molecular chaperones after MDMA administration of rats. Here, we examined the possible interaction of elevated Hsp27 protein level to hyperthermic responses after MDMA administration and its separation from drug-induced serotonergic neurotoxicity.
View Article and Find Full Text PDFJ Comp Neurol
July 2006
Laboratory of Neurochemistry and Experimental Medicine, National Institute of Psychiatry and Neurology, Budapest, Hungary.
3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") causes long-term disturbance of the serotonergic system. We examined the temporal, spatial, and cellular distribution of three molecular chaperones, Hsp27, Hsp72, and Hsp90, 3 and 7 days after treatment with 7.5, 15, and 30 mg/kg single intraperitoneal (i.
View Article and Find Full Text PDFJ Neurochem
May 2003
Experimental Neurology Laboratory, Neurological Service, Fundació Clínic, IDIBAPS, Barcelona, Spain.
Activation of glial cells is a prevalent response to neuronal damage in brain disease and ageing, with potential neuroprotective and neurotoxic consequences. We were interested in studying the role of glial activation on dopaminergic neurons of the substantia nigra in an animal model of Parkinson's disease. Thus, we evaluated the effect of a pre-existing glial activation on the dopaminergic neuronal death induced by striatal infusion of 6-hydroxydopamine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!