Phosphatidylinositol 4-phosphate 5-kinase Iγ_v6, a new splice variant found in rodents and humans.

Biochem Biophys Res Commun

Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.

Published: July 2011

Phosphatidylinositol 4-phosphate 5-kinase Iγ (PIP5KIγ) is subject to extensive C-terminal splice variation, with four variants, PIP5KIγ_v1, 2, 4 and 5, described in humans Schill and Anderson (2009) [7]. Here firstly, we report a new rodent splice variant, which includes the exon that was previously unique to the rodent neuron-specific PIP5KIγ93 Giudici et al. (2006) [6], but which omits the C-terminal exon of PIP5KIγ93; this new variant shows a wide tissue expression pattern in mouse. Secondly, we show that in humans there is an alternative splicing site 78 nucleotides from the start of exon 16c, such that humans additionally express both PIP5KIγ93 (which we now call PIP5KIγ_v3) specifically in brain and, again expressed more widely, the new variant described here, which we now name PIP5KIγ_v6.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176900PMC
http://dx.doi.org/10.1016/j.bbrc.2011.06.168DOI Listing

Publication Analysis

Top Keywords

phosphatidylinositol 4-phosphate
8
4-phosphate 5-kinase
8
splice variant
8
5-kinase iγ_v6
4
iγ_v6 splice
4
variant
4
variant rodents
4
humans
4
rodents humans
4
humans phosphatidylinositol
4

Similar Publications

Comprehensive analysis of proteomic and biochemical responses of Daphnia magna to short-term exposure to polystyrene microplastic particles.

Ecotoxicol Environ Saf

December 2024

Center for Environmental Safety Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea. Electronic address:

Microplastic (MP) represent a pervasive and escalating threat to aquatic ecosystems, impacting organisms from cellular to population levels. To investigate the immediate molecular impacts of MP exposure, we exposed Daphnia magna, a keystone species in freshwater ecosystems, to polystyrene microplastic particles (5 μm, 5 μg/L) for 48 h. Through proteomic and biochemical analyses, we identified extensive disruptions in key physiological pathways.

View Article and Find Full Text PDF

is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP) signaling in the actin-dependent pathogenicity of . This study further demonstrated that iron transiently regulated phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor Arf220, facilitating co-trafficking to the plasma membrane, crucial for PIP production.

View Article and Find Full Text PDF

Casein kinase 1 controls components of a TORC2 signaling network in budding yeast.

J Cell Sci

December 2024

Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.

Article Synopsis
  • TOR kinases are crucial for nutrient signaling and cell growth, organized into TORC1 and TORC2 complexes.
  • In budding yeast, TORC2 is particularly important for regulating growth rate and cell size, but how it functions is not fully understood.
  • Researchers discovered that the kinases Yck1 and Yck2 significantly impact the phosphorylation and localization of Mss4, a key player in TORC2 signaling, but their inhibition has minor effects on well-characterized pathways, indicating a potential role in less defined TORC2 functions.
View Article and Find Full Text PDF

Determining the Relative Affinity of ORPs for Lipid Ligands Using Fluorescence and Thermal Shift Assays.

Methods Mol Biol

December 2024

Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.

Lipid transfer proteins (LTPs) are specialized proteins that convey specific lipids across the cytosol to regulate the lipid composition of organelles and the plasma membrane. Quantifying to which extent these LTPs recognize and transfer various lipid species and subspecies is of prime interest to define their cellular role(s). Here, we describe how to measure in vitro the relative affinity of Osh6p, a yeast phosphatidylserine (PS)/phosphatidylinositol 4-phosphate (PI(4)P) exchanger belonging to the oxysterol-binding protein(OSBP)-related protein (ORP) family, for PS and phosphoinositide subspecies.

View Article and Find Full Text PDF

Oxysterol-binding protein (OSBP)-related proteins (ORPs) are a large family of lipid transfer proteins (LTPs) in mammals. ORPs mediate the countertransport of two distinct lipids at membrane contact sites (MCSs). ORP10 is localized via binding to ORP9 at the endoplasmic reticulum (ER)-endosome MCSs, where it mediates countertransport of phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine (PS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!