During the last 2 decades there have been numerous reports of the emergence of mefloquine resistance in Southeast Asia and nearly 50% resistance is reported in Thailand. A World Health Organization report (2001) considers mefloquine as an important component of ACT (artesunate+mefloquine) which is the first line of treatment for the control of uncomplicated/multi-drug resistant (MDR) Plasmodium falciparum malaria. In view of the emergence of resistance towards this drug, it is proposed to develop new drug combinations to prolong the protective life of this drug. Prior studies have suggested that mefloquine resistance can be overcome by a variety of agents such as ketoconazole, cyproheptadine, penfluridol, Icajine and NP30. The present investigation reports that clarithromycin (CLTR), a new macrolide, being a potent inhibitor of Cyt. P450 3A4, can exert significant resistance reversal action against mefloquine resistance of plasmodia. Experiments were carried out to find out the curative dose of CLTR against multi-drug resistant P. yoelii nigeriensis. Mefloquine (MFQ) and clarithromycin (CLTR) combinations have been used for the treatment of this MDR parasite. Different dose combinations of these two drugs were given to the infected mice on day 0 (prophylactic) and day 1 with established infection (therapeutic) to see the combined effect of these combinations against the MDR malaria infection. With a dose of 32 mg/kg MFQ and 225 mg/kg CLTR, 100% cure was observed, while in single drug groups, treated with MFQ or CLTR, the cure was zero and 40% respectively. Therapeutically, MFQ and CLTR combinations 32+300 mg/kg doses cleared the established parasitaemia on day 10. Single treatment with MFQ or CLTR showed considerable suppression of parasitaemia on day 14 but neither was curative. Follow-up of therapeutically treated mice showed enhanced anti-malarial action as reflected by their 100% clearance of parasitaemia. The present study reveals that CLTR is a useful antibiotic to be used as companion drug with mefloquine in order to overcome mefloquine resistance in plasmodia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0031182011000850 | DOI Listing |
Unlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite.
View Article and Find Full Text PDFBackground: The treatment and control of malaria in Africa is challenged by drug resistance, including transporter, folate pathway, and PfK13 mutations that mediate resistance to aminoquinolines, antifolates, and artemisinins, respectively. Characterization of drug susceptibility informs optimal control strategies.
Methods: We characterized ex vivo susceptibilities to nine drugs of isolates collected from individuals presenting with uncomplicated falciparum malaria in eastern (2019-2024) and northern (2021-2024) Uganda using a growth inhibition assay and the dihydroartemisinin (DHA) ring survival assay (RSA).
Malar J
January 2025
Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
Background: Malaria is the parasitic disease with the highest global morbidity and mortality. According to estimates from the World Health Organization (WHO), there were around 249 million cases in 2022, with 3.4% occurring in Angola.
View Article and Find Full Text PDFMicroorganisms
December 2024
Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, Université de Picardie Jules Verne, 1 rue des Louvels, 80037 Amiens, France.
Currently, artemisinin-based combination therapy is recommended as first-line treatment of uncomplicated malaria. Arylamino alcohols (AAAs) such as mefloquine (MQ) are the preferred partner drugs due to their longer half-life, reliable absorption and strong antimalarial activity. However, the mode of action of MQ remains poorly understood and its neurotoxicity limits its use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!