Entry of pseudorabies virus into CHO cells is blocked at the level of penetration.

Arch Virol

Institute for Clinical and Experimental Virology, Free University of Berlin, Federal Republic of Germany.

Published: January 1991

Replication of pseudorabies virus (PrV) in Chinese hamster ovary (CHO) cells, a cell line naturally resistant to infection by herpesviruses, is blocked at the level of penetration. Virions bound to the surface of CHO cells are taken up into cytoplasmic vesicles and degraded.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01310539DOI Listing

Publication Analysis

Top Keywords

cho cells
12
pseudorabies virus
8
blocked level
8
level penetration
8
entry pseudorabies
4
virus cho
4
cells blocked
4
penetration replication
4
replication pseudorabies
4
virus prv
4

Similar Publications

Distribution analysis of RAB11A and RAB11B, small GTP-binding proteins, in mice.

Mol Biol Rep

January 2025

Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan.

Background: RAB11 is a small GTP-binding protein that regulates intracellular trafficking of recycling endosomes and is thereby involved in several neural functions. Highly similar RAB11 isoforms are encoded by RAB11A and RAB11B genes, and their pathogenic variants are associated with similar neurodevelopmental disorders, suggesting that RAB11A and RAB11B play similar and important roles in brain development. However, the detailed distribution patterns of these isoforms in various organs, including the brain, remain undetermined.

View Article and Find Full Text PDF

Background: Single-cell RNA sequencing (scRNA-seq) has improved our ability to characterize rare cell populations. In practice, cells from different tissues or donors are simultaneously loaded onto the instrument (multiplexed) at the recommended (standard loading) or higher (superloading) numbers to save time and money. Although cost-effective, superloading can stymie computational analyses owing to high multiplet rates and sample complexity.

View Article and Find Full Text PDF

Optimization of the intron sequences combined with the CMV promoter increases recombinant protein expression in CHO cells.

Sci Rep

January 2025

International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.

To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells.

View Article and Find Full Text PDF

miR378a-3p in serum extracellular vesicles is associated with pancreatic beta-cell mass in diabetic states.

Biochem Biophys Res Commun

January 2025

Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. Electronic address:

The condition in which the insulin secretory ability of pancreatic β-cells decreases in diabetes is extremely important, but there are currently no biomarkers that reflect pancreatic β-cell failure. Therefore, we conducted a search for biomarkers, using pancreatic β-cell-specific 3-Phosphoinositide-dependent protein kinase 1 (PDK1) knockout mice, which develop severe hyperglycemia due to a decrease in pancreatic β-cell mass without insulin resistance. The analysis was performed in young mice when metabolic abnormalities were not yet apparent.

View Article and Find Full Text PDF

Recent trends in embedded 3D bioprinting of vascularized tissue constructs.

Biofabrication

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea, Pohang, 37673, Korea (the Republic of).

3D bioprinting technology offers significant advantages in the fabrication of tissue and organ structures by allowing precise layer-by-layer patterning of cells and various biomaterials. However, conventional bioinks exhibit poor mechanical properties, which limit their use in the fabrication of large-scale vascularized tissue constructs. To address these limitations, recent studies have focused on the development of rapidly crosslinkable bioinks through chemical modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!