The aim of the study was to assess the correlation between the levels of catecholamines and cerebral hemodynamics in patients with chronic post-traumatic stress disorder (PTSD). The study included 50 patients with chronic PTSD hospitalized for psychiatric treatment for the first time, and 50 healthy control subjects. All study subjects were in the 30-50 age group. In PTSD group, determination of vanllylmandelic acid (VMA), an epinephrine and norepinephrine metabolite, in 24-h urine and transcranial Doppler (TCD) sonography of the circle of Willis vasculature were performed on the first day of hospital stay. The same diagnostic procedures were repeated upon the completion of 21-day medicamentous psychiatric treatment. Initial analysis revealed concurrently elevated 24-h VMA in 29 (58.00%) patients and increased values of the mean blood flow velocity (MBFV) in the circle of Willis vasculature in 34 (68.00%) patients, indicating a high correlation of the respective parameters (p = 0.3290). Second analysis performed after 21-day psychiatric treatment showed concurrently elevated 24-h VMA in eight (16.00%) patients and increased MBFV in the circle of Willis vasculature in nine (18.00%) patients, also pointing to a high correlation of the parameters observed (p = 0.7906). In the control group, only two (4.00%) subjects had elevated MBFV in the circle of Willis vessels, whereas the level of 24-h VMA was normal in all control subjects. Study results pointed to a significant association between elevated levels of stress hormones and increased MBFV in the circle of Willis vasculature caused by cerebral vasospasm. Medicamentous psychiatric treatment for PTSD administered for three weeks significantly reduced the proportion of PTSD patients with elevated levels of the catecholamine metabolite and cerebral vasospasm. Study results showed a high correlation between diurnal VMA level and elevated MBFV in the circle of Willis vessels, clearly demonstrating the effect of prolonged elevation of catecholamine levels on cerebral hemodynamics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

circle willis
24
mbfv circle
20
psychiatric treatment
16
willis vasculature
16
cerebral hemodynamics
12
patients chronic
12
24-h vma
12
high correlation
12
catecholamine levels
8
levels cerebral
8

Similar Publications

Objective: Endovascular mechanical thrombectomy (EVMT) is widely employed in patients with acute intracranial carotid artery occlusion (AIICAO). This study aimed to predict the outcomes of EVMT following AIICAO by utilizing anatomic classification of the circle of Willis and its relative position to the thrombus.

Methods: In this study, we retrospectively analyzed a cohort of 108 patients with AIICAO who underwent endovascular mechanical thrombectomy (EVMT) at Shaoxing People's Hospital.

View Article and Find Full Text PDF

Background: This study aims to investigate how A1 segment asymmetry-also known as A1 dominancy-influences the development of the anterior communicating artery aneurysm (AcomA) as it affects hemodynamic conditions within the circle of Willis (COW). Using time-of-flight magnetic resonance angiography (TOF-MRA), the research introduces a novel approach to assessing shear stress in A1 segments to uncover the hemodynamic factors contributing to AcomA formation.

Method: An observational study was conducted over 6 years at a tertiary university hospital's outpatient clinic.

View Article and Find Full Text PDF

Endovascular versus Best Medical Treatment for Acute Carotid Occlusion BelOw Circle of Willis (ACOBOW): The ACOBOW Study.

Radiology

January 2025

From the Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany (L.M., G.B., P.S., J.F., C.P.S.); Dept of Diagnostic and Interventional Neuroradiology, Hosp Bremen-Mitte, Bremen, Germany (M.A., P.P.); Interventional Neuroradiology Section, Dept of Radiology, Donostia Univ Hosp, Donostia-San Sebastián, Spain (Á.L., J.Á.L.); Clinic for Radiology, Section for Interventional Radiology, Univ of Münster and Univ Hosp Münster, Münster, Germany (W.S., H.K., C.P.S.); Dept of Neuroradiology, Westpfalz-Klinikum, Kaiserslautern, Germany (W.N.); Dept of Neuroradiology, Otto-von-Guericke-Universitätsklinikum Magdeburg, Magdeburg, Germany (D.B., M.T.); Inst for Diagnostic and Interventional Radiology and Neuroradiology, Univ Hosp Essen, Essen, Germany (H.S., C.D.); Dept of Neuroradiology, Univ of Cologne, Cologne, Germany (C.K., C.Z.); Dept of Neuroradiology, Univ Hosp Aachen, Aachen, Germany (C.W., M. Möhlenbruch); Dept of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical Univ Munich, Munich, Germany (M.R.H.P., C.M.); Inst of Neuroradiology, Univ Hosps, LMU Munich, Munich, Germany (H.Z.); Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Goettingen, Goettingen, Germany (M. Ernst, A.J.); Interventional Neuroradiology, Dept of Radiology, Hosp Clínico San Carlos, Madrid, Spain (M.M.G., C.P.G.); Dept of Neuroradiology, Hosp Universitario La Paz, Madrid, Spain (P.N., A.F.P.); Div of Neurology, Dept of Medicine (L.Y., B.T.), and Div of Interventional Radiology, Dept of Diagnostic Imaging (A.G.), National Univ Health System, Singapore; Yong Loo Lin School of Medicine, National Univ of Singapore, Singapore (L.Y., B.T., A.G.); Inst of Neuroradiology, Charité Universitätsmedizin Berlin, Berlin, Germany (E.S., M. Miszczuk); Dept of Neuroradiology, Clinic and Policlinic of Radiology, Univ Hosp Halle/Saale, Halle, Germany (S.S.); Dept of Radiology and Neuroradiology, Stadtspital Zürich, Zürich, Switzerland (P.S.); Dept of Diagnostic and Interventional Neuroradiology, Univ Hosp Basel, Basel, Switzerland (P.S., M.P.); Depts of Interventional Neuroradiology (J.Z.P.) and Neurology (G.P.), Hosp Clínico Universitario Virgen de la Arrixaca, Murcia, Spain; Dept of Neuroradiology, Karolinska Univ Hosp and Dept of Clinical Neuroscience, Karolinska Inst, Stockholm, Sweden (F.A., T.A.); Dept of Medical Imaging, AZ Groeninge, Kortrijk, Belgium (T.A.); Dept of Radiology, Comenius Univ's Jessenius Faculty of Medicine and Univ Hosp, Martin, Slovakia (K.Z.); Dept of Radiology, Aretaieion Univ Hosp, National and Kapodistrian Univ of Athens, Athens, Greece (P.P.); Dept of Neuroradiology, Univ Hosp Marburg, Marburg, Germany (A.K.); Dept of Neuroradiology, Univ Hosp of Bonn, Bonn, Germany (F.D.); and Dept of Neuroradiology, Alfried Krupp Krankenhaus, Essen, Germany (M. Elsharkawy).

Background Symptomatic acute occlusions of the internal carotid artery (ICA) below the circle of Willis can cause a variety of stroke symptoms, even if the major intracranial cerebral arteries remain patent; however, outcome and safety data are limited. Purpose To compare treatment effects and procedural safety of endovascular treatment (EVT) and best medical treatment (BMT) in patients with symptomatic acute occlusions of the ICA below the circle of Willis. Materials and Methods This retrospective, multicenter cohort study from 22 comprehensive stroke centers in Europe and Asia includes patients treated between January 1, 2008, and December 31, 2022.

View Article and Find Full Text PDF

Sex-specific anatomical variation of circle of Willis arteries.

Neuroimage

January 2025

Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands. Electronic address:

Background: Anatomical variations in the circle of Willis (CoW) arteries are common and can affect hemodynamic stress, thereby influencing the risk of cerebrovascular pathology. Previous studies have suggested sex differences in CoW anatomy, but findings vary due to limited study population size and different measurement methods. This study aims to investigate sex differences in artery diameters, anatomical variants and bifurcation angles of the CoW using a large population cohort and semi-automatic measurements.

View Article and Find Full Text PDF

Cerebral aneurysms (CA) are a serious condition characterized by the bulging of a blood vessel in the brain, which can lead to rupture and life-threatening bleeding. The pathophysiology of CA involves complex processes, particularly inflammation and macrophage infiltration. Phoenixin-14 (PNX-14) is a neuropeptide with diverse biological effects, including roles in reproduction, energy homeostasis, and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!