Endogenous retroviruses of sheep: a model system for understanding physiological adaptation to an evolving ruminant genome.

Soc Reprod Fertil Suppl

Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, TX, USA.

Published: August 2011

Endogenous retroviruses (ERVs) are present in the genome of all vertebrates and are remnants of ancient exogenous retroviral infections of the host germline transmitted vertically from generation to generation. Sheep betaretroviruses offer a unique model system to study the complex interaction between retroviruses and their host. The sheep genome contains 27 endogenous betaretroviruses (enJSRVs) related to the exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRV), the causative agent of a transmissible lung cancer in sheep. The enJSRVs can protect their host against JSRV infection by blocking early and late steps of the JSRV replication cycle. In the female reproductive tract, enJSRVs are specifically expressed in the uterine luminal and glandular epithelia as well as in the conceptus (embryo and associated extraembryonic membranes) trophectoderm and in utero loss-of-function experiments found the enJSRVs envelope (env) to be essential for conceptus elongation and trophectoderm growth and development. Collectively, available evidence in sheep and other mammals indicate that ERVs coevolved with their hosts for millions of years and were positively selected for biological roles in genome plasticity and evolution, protection of the host against infection of related pathogenic and exogenous retroviruses, and placental development.

Download full-text PDF

Source

Publication Analysis

Top Keywords

endogenous retroviruses
8
model system
8
genome endogenous
8
sheep
6
retroviruses sheep
4
sheep model
4
system understanding
4
understanding physiological
4
physiological adaptation
4
adaptation evolving
4

Similar Publications

HERV-W Env Induces Neuron Pyroptosis via the NLRP3-CASP1-GSDMD Pathway in Recent-Onset Schizophrenia.

Int J Mol Sci

January 2025

State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.

HERVs (Human endogenous retroviruses) are remnants of ancient exogenous retroviruses that have integrated into the human genome, particularly in germ-line cells. Among these, the envelope protein gene (Human endogenous retroviruses W family envelope protein), located on chromosome 7 and primarily expressed in the human placenta, has been closely linked to various neuropsychiatric disorders, including schizophrenia, as well as autoimmune diseases and cancer. Recent studies have highlighted the abnormal expression of cytokines as a key factor in the pathophysiology of schizophrenia.

View Article and Find Full Text PDF

Increasing evidence indicates that human endogenous retroviruses (HERVs) are important to human health and are an underexplored component of many diseases. Certain HERV families show unique expression patterns and immune responses in autism spectrum disorder (ASD) patients compared to healthy controls, suggesting their potential as biomarkers. Despite these interesting findings, the role of HERVs in ASD needs to be further investigated.

View Article and Find Full Text PDF

The human endogenous retroviruses (HERVs) are ancient exogenous retroviruses that were embedded in the germline over 30 million years ago and underwent an endogenization process. They make up roughly 8% of the human genome. HERVs exhibit many physiological and non-physiological functions; for example, they play a role in the development of many diseases.

View Article and Find Full Text PDF

Subtype-specific human endogenous retrovirus K102 envelope protein is a novel serum immunosuppressive biomarker of cancer.

Front Immunol

January 2025

Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Immune dysfunction is one of the hallmarks of cancer and plays critical roles in immunotherapy resistance, but there is no serum biomarker that can be used to evaluate immune-dysfunction status of cancer patients. Here, we identified subtype-specific human endogenous retrovirus K102 envelope (HERV-K102-Env) with immunosuppressive activity in circulating blood as a novel serum immunosuppressive biomarker of cancer. We first generated monoclonal antibodies against K102-Env with high sensitivity and specificity, and we developed an ELISA assay to detect serum K102-Env.

View Article and Find Full Text PDF

Introduction: The envelope proteins syncytin-1 and pHERV-W from the Human Endogenous Retroviral family 'W' (HERV-W) have been identified as potential risk factors in multiple sclerosis (MS). This study aims to evaluate both humoral and cell-mediated immune response to antigenic peptides derived from these proteins across different clinical forms and inflammatory phases of MS.

Methods: Indirect enzyme-linked immunosorbent assay (ELISA) was employed to measure immunoglobulin G (IgG) responses to syncytin-1 and pHERV-W peptides in MS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!