The polymeric title compound, {[Ba(2)(C(9)H(4)N(2)O(4))(2)(H(2)O)]·4.5H(2)O}(n), adopts a layer structure parallel to (001) in which adjacent Ba(II) atoms are connected by two benzimidazole-5,6-dicarboxyl-ate dianions, one functioning in a μ(4)-bridging mode and the other in a μ(5)-bridging mode. The Ba atom having water in its coordination environment as well as the Ba atom without water exist in a nine-coordinate polyhedron of O atoms; the geometry is difficult to derive. Lattice water mol-ecules occupy the space between layers and inter-act with the layers through O-H⋯O, O-H⋯N and N-H⋯O hydrogen bonds. ne of the five lattice water molecules is equally disordered around an inversion centre and shows half-occupancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120458 | PMC |
http://dx.doi.org/10.1107/S160053681101590X | DOI Listing |
Photosynth Res
January 2025
Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
The present work employs the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ level of theory to investigate the effect of a water monomer (WM) and dimer (WD) on the oxidation of nitrous acid (HONO) by the Criegee intermediate (CHOO). The present work suggests that similar to an uncatalyzed path, a water catalyzed reaction can also proceed two paths, , the oxygen atom transfer (OAT) and the hydrogen atom transfer (HAT) path. In addition, here also, the HAT path dominates over the OAT path.
View Article and Find Full Text PDFMacromolecules
January 2025
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.
Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature ( ).
View Article and Find Full Text PDFSmall
January 2025
School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
As an oxidant, the ferryl-oxo complex (Fe═O) offers excellent reactivity and selectivity for degrading recalcitrant organic contaminants. However, enhancing Fe═O generation on heterogeneous surfaces remains challenging because the underlying formation mechanism is poorly understood. This study introduces edge defects onto a single-atom Fe catalyst (FeNC-edge) to promote Fe═O generation via peroxymonosulfate (PMS) activation.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Numerous in situ characterization studies have focused on revealing the catalytic mechanisms of single-atom catalysts (SACs), providing a theoretical basis for their rational design. Although research is relatively limited, the stability of SACs under long-term operating conditions is equally important and a prerequisite for their real-world energy applications, such as fuel cells and water electrolyzers. Recently, there has been a rise in in situ characterization studies on the destabilization and regeneration of SACs; however, timely and comprehensive summaries that provide the catalysis community with valuable insights and research directions are still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!