The Ni(II) atom in the title compound, [Ni(C(8)H(5)NO(4))(C(12)H(8)N(2))(H(2)O)(3)]·3H(2)O, is six-coordinated in an NiN(3)O(3) octa-hedral geometry. The triply water-coordinated Ni(II) atom is chelated by the phenantroline ligand and is additionally coordinated by the amino group of the 5-amino-isophtalate anion. The anion, the coordinated and the uncoordinated water mol-ecules inter-act through an extensive O-H⋯O and N-H⋯O hydrogen-bonding network, generating a three-dimensional cage-like network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099854 | PMC |
http://dx.doi.org/10.1107/S1600536811008919 | DOI Listing |
Molecules
December 2024
Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
In this article, we investigate the encapsulation of K[Ni(maleonitriledithiolate)] () within a host molecule, β-cyclodextrin (β-CD), via single-crystal X-ray analysis. An inclusion complex, K{[Ni(maleonitriledithiolate)]@(β-CD)} (), was constructed from and two β-CDs. The anion guest Ni complex included a host cavity, constructed using two β-CDs, and the Ni atom of the anion was located between the two hydrophilic primary rims.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
The synthesis, characterization, and reactivity of a NiOH core bearing a tridentate redox-active ligand capable of reaching three molecular oxidation states is presented in this paper. The reduced complex [LNiOH] was characterized by single-crystal X-ray diffraction analysis, depicting a square-planar NiOH core stabilized by intramolecular H-bonding interactions. Cyclic voltammetry measurements indicated that [LNiOH] can be reversibly oxidized to [LNiOH] and [LNiOH] at very negative reduction potentials (-1.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Ni-catalyzed multicomponent cross-couplings have emerged as a powerful strategy for efficiently constructing complex molecular architectures from a diverse array of organic halides. Despite its potential, selectively forming multiple chemical bonds in a single operation, particularly in the realm of cross-electrophile coupling catalysis, remains a significant challenge. In this study, we have developed a consecutive open-shell reductive Ni catalysis, enabling the formation of two geminal C(sp)-C(sp) bonds from two stereoelectronically similar C(sp)-I reactants in conjunction with a methylene electrophile.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
A systematic theoretical study was performed on the electrophilic and nucleophilic properties of Group 10 square-planar metal compounds [M(SCNEt)] (M = Ni , Pd , and Pt ) and their complexes. The nucleophilic metal center and coordinated sulfur atom in [M(SCNEt)] facilitate the formation of metal-involving and conventional noncovalent bonds. The presence a heavier metal center results in a more negative electrostatic potential and a larger nucleophilicity, which in turn leads to the formation of stronger metal-involving noncovalent bonds than those formed by a lighter metal center.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Inorganic Chemistry, Shahid Beheshti University, Tehran, 19839 69411, Iran.
Five metal dithiocarbamate complexes [M(PTHIQDTC)] [where PTHIQDTC is (S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline dithiocarbamate anion and M is Ni(II) (1), Sn(II) (2), Hg(II) (3), Pb(II) (4) and Zn(II) (5)] were synthesized from the reaction of MX (X is Cl for 1-3 and OAc for 4-5) with ligand of triethylammonium (S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline dithiocarbamate [EtNH][PTHIQDTC] in methanolic solution at room temperature. The five complexes were characterized by IR, H andC NMR, mass spectrometry, elemental analysis and TGA analysis. Recrystallization of [Zn(PTHIQDTC)] (5) in dimethylsulfoxide (DMSO) converts 5 to [Zn(PTHIQDTC)(DMSO)] (6).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!