The purpose of our study was to validate the ability of pinhole micro-single-photon emission computed tomography/computed tomography (SPECT/CT) to: 1) accurately resolve the intratumoral dispersion pattern and 2) quantify the infection percentage in solid tumors of an oncolytic measles virus encoding the human sodium iodide symporter (MV-NIS). Sodium iodide symporter (NIS) RNA level and dispersion pattern were determined in control and MV-NIS-infected BxPC-3 pancreatic tumor cells and mouse xenografts using quantitative, real-time, reverse transcriptase, polymerase chain reaction, autoradiography and immunohistochemistry (IHC). Mice with BxPC-3 xenografts were imaged with (123)I or (99)TcO(4) micro-SPECT/CT. Tumor dimensions and radionuclide localization were determined with imaging software. Linear regression and correlation analyses were performed to determine the relationship between tumor infection percentage and radionuclide uptake (% injected dose per gram) above background and a highly significant correlation was observed (r(2)=0.947). A detection threshold of 1.5-fold above the control tumor uptake (background) yielded a sensitivity of 2.7% MV-NIS-infected tumor cells. We reliably resolved multiple distinct intratumoral zones of infection from non-infected regions. Pinhole micro-SPECT/CT imaging using the NIS reporter demonstrated precise localization and quantitation of oncolytic MV-NIS infection, and can replace more time-consuming and expensive analyses (for example, autoradiography and IHC) that require animal killing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198860PMC
http://dx.doi.org/10.1038/gt.2011.107DOI Listing

Publication Analysis

Top Keywords

pinhole micro-spect/ct
8
quantitation oncolytic
8
solid tumors
8
dispersion pattern
8
infection percentage
8
sodium iodide
8
iodide symporter
8
tumor cells
8
infection
5
tumor
5

Similar Publications

The purpose of our study was to validate the ability of pinhole micro-single-photon emission computed tomography/computed tomography (SPECT/CT) to: 1) accurately resolve the intratumoral dispersion pattern and 2) quantify the infection percentage in solid tumors of an oncolytic measles virus encoding the human sodium iodide symporter (MV-NIS). Sodium iodide symporter (NIS) RNA level and dispersion pattern were determined in control and MV-NIS-infected BxPC-3 pancreatic tumor cells and mouse xenografts using quantitative, real-time, reverse transcriptase, polymerase chain reaction, autoradiography and immunohistochemistry (IHC). Mice with BxPC-3 xenografts were imaged with (123)I or (99)TcO(4) micro-SPECT/CT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!