The circadian clock is required for adaptive responses to daily and seasonal changes in environmental conditions. Light and the circadian clock interact to consolidate the phase of hypocotyl cell elongation to peak at dawn under diurnal cycles in Arabidopsis thaliana. Here we identify a protein complex (called the evening complex)--composed of the proteins encoded by EARLY FLOWERING 3 (ELF3), ELF4 and the transcription-factor-encoding gene LUX ARRHYTHMO (LUX; also known as PHYTOCLOCK 1)--that directly regulates plant growth. ELF3 is both necessary and sufficient to form a complex between ELF4 and LUX, and the complex is diurnally regulated, peaking at dusk. ELF3, ELF4 and LUX are required for the proper expression of the growth-promoting transcription factors encoded by PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 (also known as PHYTOCHROME INTERACTING FACTOR 3-LIKE 6) under diurnal conditions. LUX targets the complex to the promoters of PIF4 and PIF5 in vivo. Mutations in PIF4 and/or PIF5 are epistatic to the loss of the ELF4-ELF3-LUX complex, suggesting that regulation of PIF4 and PIF5 is a crucial function of the complex. Therefore, the evening complex underlies the molecular basis for circadian gating of hypocotyl growth in the early evening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155984PMC
http://dx.doi.org/10.1038/nature10182DOI Listing

Publication Analysis

Top Keywords

circadian clock
12
pif4 pif5
12
elf4-elf3-lux complex
8
hypocotyl growth
8
elf3 elf4
8
elf4 lux
8
phytochrome interacting
8
interacting factor
8
complex
7
lux
5

Similar Publications

Basic helix-loop-helix ARNT like 1 regulates the function of immune cells and participates in the development of immune-related diseases.

Burns Trauma

January 2025

Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China.

The circadian clock is an internal timekeeper system that regulates biological processes through a central circadian clock and peripheral clocks controlling various genes. Basic helix-loop-helix ARNT-like 1 (), also known as aryl hydrocarbon receptor nuclear translocator-like protein 1 (), is a key component of the circadian clock. The deletion of alone can abolish the circadian rhythms of the human body.

View Article and Find Full Text PDF

Circadian clock regulates plant development and physiology by anticipating daily environmental changes. Here we studied the core clock protein involved in β-aminobutyric acid (BABA)-inducible SAR resistance to Rhizopus stolonifer in peach fruit. BABA elicitation barely primed the accumulation of jasmonate or ethylene, whose regulation was associated with morning-loop gene expression.

View Article and Find Full Text PDF

Introduction: Obesity is a multifactorial disease caused by an interaction between genetic, environmental and behavioral factors. Polymorphisms of the two genes Circadian Locomotor Output Cycles Kaput (CLOCK) rs1801260 and Melanocortin-4-receptor (MC4R) rs17782313, are associated with obesity. Knowledge is limited on the interaction between CLOCK, MC4R and obesity.

View Article and Find Full Text PDF

Maternal high-fat diet alters the transcriptional rhythm in white adipose tissue of adult offspring.

J Nutr Biochem

January 2025

Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. Electronic address:

A maternal high-fat diet (HFD) deteriorates the long-term metabolic health of offspring. Circadian rhythms are crucial for regulating metabolism. However, the impact of maternal HFD on the circadian clock in white adipose tissue (WAT) remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!