Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Load carriage walking (LCW) challenges a person's balance as the load increases their forward trunk inclination, shifting the center of mass (COM) forward with respect to the base of support (BOS). We examined LCW to understand whether and how healthy people adjust the temporal relationship (TR) between the trunk and leg for balance control. Ten subjects were recruited to perform unloaded walking and LCW. The TR between the trunk and leg was measured by the continuous relative phase. The maximum forward displacement of the COM with respective to the BOS (FDCOM(BOS)) was recorded during the stance phase. We found that the TR was shifted in LCW, and the shift was associated with a decrease in the maximum FDCOM(BOS). The findings suggest that the TR between the trunk and leg contributes to balance control, and it may be a variable that needs to be addressed in gait rehabilitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2011.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!