According to the Fick principle, any metabolic or hormonal exchange through a given tissue depends on the product of blood flow by arteriovenous difference. Because adipose tissue plays dual storage and endocrine roles, regulation of adipose tissue blood flow (ATBF) is of pivotal importance. Monitoring ATBF in humans can be achieved through different methodologies, such as the (133)Xe washout technique, considered to be the "gold standard", as well as microdialysis and other methods that are not well validated as of yet. This report describes a new method, called "adipose tissue microinfusion" or "ATM", which simultaneously quantifies ATBF by combining the (133)Xe washout technique together with variations of ATBF induced by local infusion of vasoactive agents. The most appropriate site for ATM investigation is the subcutaneous adipose tissue of the anterior abdominal wall. This innovative method conveniently enables the direct comparison of the effects on ATBF of any vasoactive compound, drug, or hormone against a contralateral saline control. The ATM method improves the accuracy and feasibility of physiological and pharmacological studies on the regulation of ATBF in vivo in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/y11-039 | DOI Listing |
Nature
January 2025
Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis.
View Article and Find Full Text PDFJ Hepatobiliary Pancreat Sci
January 2025
Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan.
Background: High subcutaneous adipose tissue radiodensity (SATr), an indirect surrogate marker of adipose tissue quality, was associated with poor prognosis in various cancers. The present study aimed to assess the association of SATr with survival outcomes in patients with advanced biliary tract cancer (BTC).
Methods: This retrospective, single-center study included patients with unresectable or recurrent BTC who underwent chemotherapy/chemoradiotherapy.
Int J Biol Macromol
January 2025
Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan. Electronic address:
The rising pandemic of obesity has received significant attention. Yet, more safe and effective targeted strategies must be used to mitigate its impact on individual health and the global disease burden. While the health benefits of resistant starch (RS) are well-documented, the role of RT-90 (a phosphate-modified tapioca RS containing 90.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg, Universitätsplatz 2 39106, Magdeburg, Germany; Department of Computational Medicine, Ilmenau University of Technology, Germany.
Purpose: This paper presents a deep learning-based multi-label segmentation network that extracts a total of three separate adipose tissues and five different muscle tissues in CT slices of the third lumbar vertebra and additionally improves the segmentation of the intermuscular fat.
Method: Based on a self-created data set of 130 patients, an extended Unet structure was trained and evaluated with the help of Dice score, IoU and Pixel Accuracy. In addition, the interobserver variability for the decision between ground truth and post-processed segmentation was calculated to illustrate the relevance in everyday clinical practice.
Front Cell Dev Biol
December 2024
Department of Pathophysiology, Guangdong Medical University, Dongguan, China.
In recent years, stem cell therapy has become a pivotal component of regenerative medicine. Stem cells, characterized by their self-renewal capacity and multidirectional differentiation potential, can be isolated from a variety of biological tissues, including adipose tissue, bone marrow, the umbilical cord, and the placenta. The classic applications of stem cells include human pluripotent stem cells (hPSCs) and mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!