Effect of diabetes on alteration of metabolism in cardiac myocytes: therapeutic implications.

Diabetes Technol Ther

Department of Endocrinology, Medwin Hospital, Hyderabad, Andhrapradesh, India.

Published: November 2011

Diabetic cardiomyopathy is a distinct entity in humans. It leads to ventricular dysfunction independent of and additive to coronary artery disease and hypertension. Clinical and experimental studies have pointed to the role of metabolic derangements in the development of diabetic cardiomyopathy. Altered insulin signaling in diabetes leads to decreased myocyte glucose uptake and utilization, associated with an increased concentration of free fatty acids. This results in decreased glucose oxidation and increased fatty acid oxidation. Fatty acids increase mitochondrial oxygen consumption for ATP production and stimulate the uncoupling proteins in mitochondria. These proteins decrease the mitochondrial protein gradient, leading to fall in ATP production. The resultant defect in myocardial energy production impairs myocyte contraction and diastolic function. This is the hallmark of diabetic cardiomyopathy at earlier stages. In later stages diabetes impairs the myocyte ischemic defense mechanism, leading to increased cardiovascular morbidity and mortality. Other factors contributing toward causation of diabetic cardiomyopathy are collagen accumulation leading to reduced myocardial compliance, accumulation of advanced glycation end product-modified extracellular matrix proteins with subsequent inelasticity of vessel walls and myocytes, abnormal myocardial calcium handling leading to altered mechanics, endothelial dysfunction, cardiac autonomic neuropathy, and impairment of ischemic preconditioning. Trimetazidine acts a metabolic switch, favoring glucose over free fatty acids as the substrate for metabolism in cardiac myocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dia.2011.0120DOI Listing

Publication Analysis

Top Keywords

diabetic cardiomyopathy
16
fatty acids
12
metabolism cardiac
8
cardiac myocytes
8
free fatty
8
atp production
8
impairs myocyte
8
diabetes alteration
4
alteration metabolism
4
myocytes therapeutic
4

Similar Publications

The growing global prevalence of diabetes mellitus (DM), along with its associated complications, continues to rise. When clinically detected most DM complications are irreversible. It is therefore crucial to detect and address these complications early and systematically in order to improve patient care and outcomes.

View Article and Find Full Text PDF

Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG.

View Article and Find Full Text PDF

Background Maternal diabetes mellitus (DM) is a known risk factor for congenital heart diseases (CHDs), which are of significant concern to infants born to diabetic mothers. Compared to newborns born to non-diabetic mothers, infants born to diabetic mothers had a higher overall risk of developing congenital malformations. This association has a complex pathophysiology that includes genetic predispositions, metabolic abnormalities, and environmental factors during key stages of fetal development.

View Article and Find Full Text PDF

Diabetes mellitus (DM) leads to a more rapid development of DM cardiomyopathy (dbCM) and progression to heart failure in women than men. Combination of high-fat diet (HFD) and freshly-injected streptozotocin (STZ) has been widely used for DM induction, however emerging data shows that anomer-equilibrated STZ produces an early onset and robust DM model. We designed a novel protocol utilising a combination of multiple doses of anomer-equilibrated STZ injections and HFD to develop a stable murine DM model featuring dbCM analogous to humans.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!