Fusarium graminearum is the causal agent of gibberella ear rot in maize ears, resulting in yield losses due to mouldy and mycotoxin-contaminated grain. This study represents a global proteomic approach to document the early infection by F. graminearum of two maize inbreds, B73 and CO441, which differ in disease susceptibility. Mock- and F. graminearum-treated developing kernels were sampled 48 h post-inoculation over three field seasons. Infected B73 kernels consistently contained higher concentrations of the mycotoxin deoxynivalenol than the kernels of the more tolerant inbred CO441. A total of 2067 maize proteins were identified in the iTRAQ analysis of extracted kernel proteins at a 99% confidence level. A subset of 878 proteins was identified in at least two biological replicates and exhibited statistically significantly altered expression between treatments and/or the two inbred lines of which 96 proteins exhibited changes in abundance >1.5-fold in at least one of the treatments. Many proteins associated with the defense response were more abundant after infection, including PR-10 (PR, pathogenesis-related), chitinases, xylanase inhibitors, proteinase inhibitors, and a class III peroxidase. Kernels of the tolerant inbred CO441 contained higher levels of these defense-related proteins than B73 kernels even after mock treatment, suggesting that these proteins may provide a basal defense against Fusarium infection in CO441.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.201100177DOI Listing

Publication Analysis

Top Keywords

maize inbreds
8
gibberella ear
8
ear rot
8
b73 kernels
8
contained higher
8
kernels tolerant
8
tolerant inbred
8
inbred co441
8
proteins identified
8
proteins
7

Similar Publications

Maize ( L.) is a globally important crop, thriving across diverse environments. Breeding maize inbreds with good combining ability for stable yields under both optimal and stress-prone conditions has been successful.

View Article and Find Full Text PDF

Assessing the success of breeding maize inbred lines with contrasting diferulate concentrations.

BMC Plant Biol

January 2025

Misión Biológica de Galicia (CSIC), Depto. Producción Vegetal, Pazo de Salcedo, Carballeira 8, Pontevedra, 36143, Spain.

Background: The crosslinking of maize cell wall components, particularly mediated by the formation of ferulic acid dimers or diferulates, has been associated with important crop valorization traits such as increased pest resistance, lower forage digestibility, or reduced bioethanol production. However, these relationships were based on studies performed using diverse unrelated inbred lines and/or populations, so genetic background could interfere on these associations.

Results: In the present research, the success of a pedigree selection program aimed to obtain inbred lines from a common antecessor with contrasting diferulate concentration was evaluated.

View Article and Find Full Text PDF

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Plant roots perceive heat stress (HS) and adapt their architecture accordingly, which in turn influence the yield in crops. Investigating their heterogeneity and cell type-specific response to HS is essential for improving crop resilience. Here, we generate single-cell transcriptional landscape of maize (Zea mays) roots in response to HS.

View Article and Find Full Text PDF

Following the identification of the self-compatibility gene () in diploid potatoes two decades ago, the breeding of inbred based diploid hybrid potatoes made its way. Tetraploid potatoes have a long history of cultivation through domestication and selection. Tetrasomic inheritance, heterozygosity and clonal propagation complicate genetic studies, resulting in a low genetic gain in potato breeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!