Protein kinase CK2 is emerging as a target in neoplastic diseases. Inhibition of CK2 by small compounds could lead to new therapies by counteracting the elevated CK2 activities found in a variety of tumors. Currently, CK2 inhibitors are primarily evaluated by a radiometric in vitro assay tracing the amount of transferred γ-(32)P from ATP to a substrate peptide. Here, we present two alternative assays abandoning radioisotopes. The first assay is based on Förster resonance energy transfer between the fluorescence donor EDANS and the acceptor molecule DABCYL within the CK2 substrate peptide [DABCYL]-RRRDDDSDDD-[EDANS]. This peptide comprises a cleavage site for pancreatic elastase, which is located next to the phosphate acceptor serine. Only the non-phosphorylated peptide can be cleaved by elastase, disrupting the FRET effect. Thus fluorescence intensity is inversely correlated with CK2 activity. The second non-radiometric assay deploys the changing of charge that occurs within the peptide substrate RRRDDDSDDD upon phosphorylation by CK2. Substrate and product of a CK2 reaction consequently show a difference in electrophoretic mobility and thus can be separated by capillary electrophoresis. Absorption detection enabled quantification of both peptide species and allowed the determination of IC(50) values. This method facilitated the testing of a small compound library by which benzofuran derivatives were identified as potent CK2 inhibitors with IC(50) values in the submicromolar range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-011-0957-4 | DOI Listing |
Cancer Biol Ther
December 2025
Department of Hematology, Taixing People's Hospital Affiliated to Yangzhou University, Taixing, China.
Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.
Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter.
ChemMedChem
January 2025
Université Claude Bernard Lyon 1: Universite Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, FRANCE.
The serine/threonine protein kinase CK2, a tetramer composed of a regulatory dimer (CK2β2) bound to two catalytic subunits CK2α, is a well-established therapeutic target for various pathologies, including cancer and viral infections. Several types of CK2 inhibitors have been developed, including inhibitors that bind to the catalytic ATP-site, bivalent inhibitors that occupy both the CK2α ATP-site and the αD pocket, and inhibitors that target the CK2α/CK2β interface. Interestingly, the bivalent inhibitor AB668 shares a similar chemical structure with the interface inhibitor CCH507.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France.
Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes.
View Article and Find Full Text PDFMolecules
December 2024
Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.
View Article and Find Full Text PDFBlood
December 2024
Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD Repeat-Containing Protein 5 (WDR5) in T-ALL; with in vitro and in vivo models we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!