BK and Kv3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity.

Cerebellum

Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Systems Neurophysiology, CIN, University of Tübingen, Otfried Müller Strasse 27, Tübingen, Germany.

Published: December 2011

Deep cerebellar nuclear neurons (DCNs) display characteristic electrical properties, including spontaneous spiking and the ability to discharge narrow spikes at high frequency. These properties are thought to be relevant to processing inhibitory Purkinje cell input and transferring well-timed signals to cerebellar targets. Yet, the underlying ionic mechanisms are not completely understood. BK and Kv3.1 potassium channels subserve similar functions in spike repolarization and fast firing in many neurons and are both highly expressed in DCNs. Here, their role in the abovementioned spiking characteristics was addressed using whole-cell recordings of large and small putative-glutamatergic DCNs. Selective BK channel block depolarized DCNs of both groups and increased spontaneous firing rate but scarcely affected evoked activity. After adjusting the membrane potential to control levels, the spike waveforms under BK channel block were indistinguishable from control ones, indicating no significant BK channel involvement in spike repolarization. The increased firing rate suggests that lack of DCN-BK channels may have contributed to the ataxic phenotype previously found in BK channel-deficient mice. On the other hand, block of Kv3.1 channels with low doses of 4-aminopyridine (20 μM) hindered spike repolarization and severely depressed evoked fast firing. Therefore, I propose that despite similar characteristics of BK and Kv3.1 channels, they play different roles in DCNs: BK channels control almost exclusively spontaneous firing rate, whereas DCN-Kv3.1 channels dominate the spike repolarization and enable fast firing. Interestingly, after Kv3.1 channel block, BK channels gained a role in spike repolarization, demonstrating how the different function of each of the two channels is determined in part by their co-expression and interplay.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12311-011-0279-9DOI Listing

Publication Analysis

Top Keywords

spike repolarization
20
fast firing
12
channel block
12
firing rate
12
channels
9
kv31 potassium
8
potassium channels
8
channels control
8
deep cerebellar
8
cerebellar nuclear
8

Similar Publications

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.

View Article and Find Full Text PDF

Effect of electrochemical topology on detection sensitivity in MEA assay for drug-induced cardiotoxicity screening.

Biosens Bioelectron

March 2025

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, United States; Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, United States; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, 21218, United States; Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, United States. Electronic address:

Cardiotoxicity remains a major challenge in drug development, accounting for 45% of medication withdrawals due to cardiac ischemia and arrhythmogenicity. To overcome the limitations of traditional multielectrode array (MEA)-based cardiotoxicity assays, we developed a Nafion-coated NanoMEA platform with decoupled reference electrodes, offering enhanced sensitivity for electrophysiological measurements. The 'Decoupled' configuration significantly reduced polarization resistance (Rp) from 12.

View Article and Find Full Text PDF

Use-dependent spike broadening (UDSB) results from inactivation of the voltage-gated K (Kv) channels that regulate the repolarization of the action potential. However, the specific signaling and molecular processes that modulate UDSB have remained elusive. Here, we applied an adeno-associated viral vector approach and dynamic clamping to conclusively demonstrate how multisite phosphorylation of the N-terminal inactivation domain (NTID) of the Kv3.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how astrocytes influence electrical activity during the formation of neuronal networks using advanced signal analysis techniques.
  • The researchers performed experiments with rat cortical neurons and astrocytes on microelectrode arrays, varying the ratios of the two cell types.
  • Findings indicate that astrocytes cause a desynchronization of neural activity and alter the actions potentials, emphasizing the need for comprehensive analysis when examining astrocytic control and potential neuronal dysfunction.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!