Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry.

Anal Bioanal Chem

Analytical Spectrometry and Sensors Group (GEAS), Institute of Environmental Sciencies (IUCA), University of Zaragoza, Zaragoza, Spain.

Published: November 2011

A method for determining the size of silver nanoparticles and their quantification by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (ICP-MS) is proposed and was tested in consumer products. Experimental conditions were studied in detail to avoid aggregation processes or alteration of the original size distributions. Additionally, losses from sorption processes onto the channel membrane were minimized for correct quantification of the nanoparticles. Mobile phase composition, injection/focusing, and fractionation conditions were evaluated in terms of their influence on both separation resolution and recovery. The ionic strength, pH, and the presence of ionic and nonionic surfactants had a strong influence on both separation and recovery of the nanoparticles. In general, better results were obtained under those conditions that favored charge repulsions with the membrane. Recovery values of 83 ± 8% and 93 ± 4% with respect to the content of silver nanoparticles were achieved for the consumer products studied. Silver nanoparticle standards were used for size calibration of the channel. The results were compared with those obtained by photon correlation spectroscopy and images taken by transmission electron microscopy. The quantification of silver nanoparticles was performed by direct injection of ionic silver standard solutions into the ICP-MS system, integration of the corresponding peaks, and interpolation of the fractogram area. A limit of detection of 5.6 μg L(-1) silver, which corresponds to a number concentration of 1×10(12) L(-1) for nanoparticles of 10 nm, was achieved for an injection volume of 20 μL.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-011-5201-2DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
16
quantification silver
8
asymmetric flow
8
flow field-flow
8
field-flow fractionation
8
fractionation coupled
8
coupled inductively
8
inductively coupled
8
coupled plasma
8
plasma mass
8

Similar Publications

The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).

View Article and Find Full Text PDF

Silver Microdisc Array Electrode Chip for Urea Detection in Saliva Samples from Patients with Chronic Nephritis.

Anal Chem

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Urea is an important biomarker for diagnosing various kidney and liver disorders. However, many existing methods rely on invasive blood sampling, which can potentially harm patients. Saliva has been recently recognized as a noninvasive and easily collectible alternative to blood for urea quantification.

View Article and Find Full Text PDF

SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping.

Biosensors (Basel)

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.

High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots.

View Article and Find Full Text PDF

High-Performance Photocatalytic Multifunctional Material Based on BiTiO-Supported Ag and TiCT for Organic Degradation and Antibacterial Applications.

Biosensors (Basel)

December 2024

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.

With the rapid development of modern science and technology and the diversification of social needs, traditional single-performance materials struggle to meet the complex and changeable application scenarios. To address the multifaceted requirements of biomedical applications, such as disease diagnosis and treatment, scientists are dedicated to developing new multifunctional biomaterials with multiple activities. BiTiO (BTO), despite its versatility and application potential, has insufficient photocatalytic performance.

View Article and Find Full Text PDF

Extensive uses of silver nanoparticles (Ag NPs) in different industries result in exposure to these nanoparticle imperatives in our daily lives. Resveratrol is found in many plants as a natural compound. The present study aimed to estimate the renal toxic effects of Ag NPs in adult male albino rats and the underlying relevant mechanisms while studying the possible role of resveratrol in ameliorating these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!