In the initial phase of development of fish embryos, a prominent and critical event is the midblastula transition (MBT). Before MBT cell cycle is rapid, highly synchronous and zygotic gene transcription is turned off. Only during MBT the cell cycle desynchronizes and transcription is activated. Multiple mechanisms, primarily the nucleocytoplasmic ratio, are supposed to control MBT activation. Unexpectedly, we find in the small teleost fish medaka (Oryzias latipes) that at very early stages, well before midblastula, cell division becomes asynchronous and cell volumes diverge. Furthermore, zygotic transcription is extensively activated already after the 64-cell stage. Thus, at least in medaka, the transition from maternal to zygotic transcription is uncoupled from the midblastula stage and not solely controlled by the nucleocytoplasmic ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131289PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021741PLOS

Publication Analysis

Top Keywords

mbt cell
8
cell cycle
8
nucleocytoplasmic ratio
8
zygotic transcription
8
highly asynchronous
4
asynchronous asymmetric
4
asymmetric cleavage
4
cleavage divisions
4
divisions accompany
4
accompany early
4

Similar Publications

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems.

Nat Commun

January 2025

College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China.

Self-assembled monolayers (SAMs) have displayed unpredictable potential in efficient perovskite solar cells (PSCs). Yet most of SAMs are largely suitable for pure Pb-based devices, precisely developing promising hole-selective contacts (HSCs) for Sn-based PSCs and exploring the underlying general mechanism are fundamentally desired. Here, based on the prototypical donor-acceptor SAM MPA-BT-BA (BT), oligoether side chains with different length (i.

View Article and Find Full Text PDF

Blastocrithidia triatomae is a monoxenic trypanosomatid parasite of triatomines, sharing the same insect vectors with Trypanosoma cruzi Chagas, 1909 and T. rangeli Tejera, 1920. It is known to cause a complex syndrome in insects which induces severe metabolic disorders and increasing in mortality rates.

View Article and Find Full Text PDF
Article Synopsis
  • * The research focused on evaluating sample cellularity using a specific gene target to ensure sample adequacy in HPV diagnostics.
  • * Findings indicate that the gene target is an effective marker for assessing sample quality, reducing the likelihood of false-negative results in HPV testing.
View Article and Find Full Text PDF

A focussed library of pyridyl and 2-hydroxyphenyl chalcones were synthesized and tested for growth inhibitory activity against H37Rv, and normal and cancer breast cell lines. Pyridyl chalcones bearing lipophilic A-ring, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!