Mechanism of 150-cavity formation in influenza neuraminidase.

Nat Commun

Department of Pharmaceutical Sciences, Computer Science and Chemistry, University of California, Irvine, California 92697, USA.

Published: July 2011

AI Article Synopsis

  • A newly discovered 150-cavity in the active site of group-1 influenza A neuraminidase proteins offers a promising target for developing drugs to combat antiviral resistance.
  • Interestingly, the 2009 H1N1 pandemic virus neuraminidase was found to lack this cavity when crystalized, but simulations show it exists mostly in a solution with an open 150-cavity.
  • Research indicates that the maintenance of a vital salt bridge is key to stabilizing the 150-cavity across different virus subtypes, enhancing our understanding of how antiviral drugs can effectively work against both the 2009 H1N1 and avian H5N1 viruses.

Article Abstract

The recently discovered 150-cavity in the active site of group-1 influenza A neuraminidase (NA) proteins provides a target for rational structure-based drug development to counter the increasing frequency of antiviral resistance in influenza. Surprisingly, the 2009 H1N1 pandemic virus (09N1) neuraminidase was crystalized without the 150-cavity characteristic of group-1 NAs. Here we demonstrate, through a total sum of 1.6 μs of biophysical simulations, that 09N1 NA exists in solution preferentially with an open 150-cavity. Comparison with simulations using avian N1, human N2 and 09N1 with a I149V mutation and an extensive bioinformatics analysis suggests that the conservation of a key salt bridge is crucial in the stabilization of the 150-cavity across both subtypes. This result provides an atomic-level structural understanding of the recent finding that antiviral compounds designed to take advantage of contacts in the 150-cavity can inactivate both 2009 H1N1 pandemic and avian H5N1 viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144582PMC
http://dx.doi.org/10.1038/ncomms1390DOI Listing

Publication Analysis

Top Keywords

influenza neuraminidase
8
2009 h1n1
8
h1n1 pandemic
8
150-cavity
5
mechanism 150-cavity
4
150-cavity formation
4
formation influenza
4
neuraminidase discovered
4
discovered 150-cavity
4
150-cavity active
4

Similar Publications

Background: Seasonal vaccination is the mainstay of human influenza prevention. Licensed influenza vaccines are regularly updated to account for viral mutations and antigenic drift and are standardised for their haemagglutinin content. However, vaccine effectiveness remains suboptimal.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels.

View Article and Find Full Text PDF

Introduction: A single oral dose of baloxavir marboxil, a cap-dependent endonuclease inhibitor, is approved for patients with influenza A or B infection; however, real-world evidence is limited. We evaluated the effectiveness of baloxavir vs neuraminidase inhibitors in reducing the incidence of severe illness in influenza outpatients aged 5-11 years.

Methods: In this retrospective cohort study, we analyzed individual-level data from patients treated with these antivirals, using a large, Japanese health insurance claims database (JMDC).

View Article and Find Full Text PDF

Phlorotannin-Rich Seaweed Extract Inhibits Influenza Infection.

Viruses

December 2024

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.

Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), A/X-31 H3N2 (X31) and A/England/195/2009 H1N1 (Eng195), resulting in the complete inhibition of infection. Time of addition assays and FACS analysis were used to help determine the modes of action.

View Article and Find Full Text PDF

Background/objectives: Humoral immunity directed against neuraminidase (NA) of the influenza virus may soften the severity of infection caused by new antigenic variants of the influenza viruses. Evaluation of NA-inhibiting (NI) antibodies in combination with antibodies to hemagglutinin (HA) may enhance research on the antibody response to influenza vaccines.

Methods: The study examined 64 pairs of serum samples from patients vaccinated with seasonal inactivated trivalent influenza vaccines (IIVs) in 2018 according to the formula recommended by the World Health Organization (WHO) for the 2018-2019 flu season.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!