Objective: Only little is known about the mechanisms of action of corticosteroids in the treatment of inflammatory liver diseases. As there is increasing evidence that stimulation of the innate immune system plays an important pathogenetic role in these conditions, we hypothesized that steroids may interfere with the activation of the Toll-like receptor (TLR) system of the liver.

Methods: To test this hypothesis, murine non-parenchymal liver cells (Kupffer cells, liver sinusoidal endothelial cells) and primary hepatocytes were stimulated with TLR 1-9 ligands in the presence or absence of dexamethasone. Expression of pro- and anti-inflammatory cytokines was determined by quantitative reverse transcription-PCR or ELISA, respectively. Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) activation was assessed by western blot analysis.

Results: TLR agonists induced the expression of pro- [tumor necrosis factor-α (TNF-α), IL-6, IL-1β, IFN-β] and anti-inflammatory cytokines [IL-10, transforming growth factor-β (TGF-β)], which was differentially modulated by steroid treatment. TNF-α and IL-6 expression was suppressed by dexamethasone, while IL-10 but not TGF-β was enhanced after TLR stimulation. IFN-β production induced by TLR 4 agonists but not TLR 3 agonists was inhibited by dexamethasone. TLR expression itself was down-regulated by steroid treatment in a cell type-specific manner. These effects were associated with suppression of the TLR-mediated activation of NF-κB.

Conclusions: TLR signaling is modulated by corticosteroids in a cell type-specific fashion resulting in down-regulation of TLR expression, suppression of pro-inflammatory and up-regulation of anti-inflammatory cytokines. This represents an as yet unknown mechanism of action for corticosteroids that may at least in part explain their therapeutic effects in inflammatory liver diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxr048DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory cytokines
12
tlr agonists
12
tlr
9
toll-like receptor
8
liver cells
8
action corticosteroids
8
inflammatory liver
8
liver diseases
8
expression pro-
8
tnf-α il-6
8

Similar Publications

There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.

View Article and Find Full Text PDF

Background: Dichloroacetate (DCA) has shown potential in modulating cellular metabolism and inflammation, particularly in cardiac conditions. This study investigates DCA's protective effects in a mouse model of myocardial infarction (MI), focusing on its ability to enhance cardiac function, reduce inflammation, and shift macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype.

Methods: An acute MI model was created using left anterior descending coronary artery ligation.

View Article and Find Full Text PDF

Exploring the therapeutic potential of Abelmoschi Corolla in psoriasis: Mechanisms of action and inflammatory pathway disruption.

Phytomedicine

January 2025

Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China. Electronic address:

Background: Psoriasis is a prevalent chronic inflammatory skin condition for which existing treatments often fall short of fully addressing patient needs. Abelmoschi Corolla (AC), a traditional Chinese medicine, and its ethanol extract, huangkui capsule, are well established for the treatment of chronic kidney diseases. The therapeutic mechanisms of AC include anti-inflammatory effects and immune modulation, which align with psoriasis treatment strategies.

View Article and Find Full Text PDF

In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!