The transcriptional regulation of mammalian meiosis is poorly characterized, owing to few genetic and ex vivo models. From a genetic screen, we identify the transcription factor MYBL1 as a male-specific master regulator of several crucial meiotic processes. Spermatocytes bearing a novel separation-of-function allele (Mybl1(repro9)) had subtle defects in autosome synapsis in pachynema, a high incidence of unsynapsed sex chromosomes, incomplete double-strand break repair on synapsed pachytene chromosomes and a lack of crossing over. MYBL1 protein appears in pachynema, and its mutation caused specific alterations in expression of diverse genes, including some translated postmeiotically. These data, coupled with chromatin immunoprecipitation (ChIP-chip) experiments and bioinformatic analysis of promoters, identified direct targets of MYBL1 regulation. The results reveal that MYBL1 is a master regulator of meiotic genes that are involved in multiple processes in spermatocytes, particularly those required for cell cycle progression through pachynema.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133921PMC
http://dx.doi.org/10.1242/dev.067645DOI Listing

Publication Analysis

Top Keywords

master regulator
12
transcription factor
8
processes spermatocytes
8
a-myb mybl1
4
mybl1 transcription
4
factor master
4
regulator male
4
male meiosis
4
meiosis transcriptional
4
transcriptional regulation
4

Similar Publications

In the complex environment of fully mechanized mining faces, the current object detection algorithms face significant challenges in achieving optimal accuracy and real-time detection of mine personnel and safety helmets. This difficulty arises from factors such as uneven lighting conditions and equipment obstructions, which often lead to missed detections. Consequently, these limitations pose a considerable challenge to effective mine safety management.

View Article and Find Full Text PDF

Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke.

View Article and Find Full Text PDF

Unraveling the microRNAs Involved in Fasciolosis: Master Regulators of the Host-Parasite Crosstalk.

Int J Mol Sci

December 2024

Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain.

Fasciolosis is a neglected tropical disease caused by helminth parasites of the genus spp., including () and (), being a major zoonotic problem of human and animal health. Its control with antihelminthics is becoming ineffective due to the increase in parasite resistance.

View Article and Find Full Text PDF

"HEALTH INSPECTIONS OF RESTAURANT ESTABLISHMENTS IN THE ATTICA REGION, GREECE. NON-COMPLIANCE DATA WITHIN THE FOOD HYGIENE SECTOR".

J Food Prot

January 2025

1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias str., Goudi 11527 Athens, Greece; Master's Program "Environment and Health. Management of Environmental Health Effects," Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias str., Goudi 11527 Athens, Greece.

Background: Ensuring food safety is a fundamental priority for public health. The catering sector has become prominent as a convenient and cost-effective method of food supply worldwide. Adherence to proper food hygiene practices is crucial for preventing foodborne diseases.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!