There is a close relationship between histone acetylation and ATP-dependent chromatin remodeling that is not fully understood. We show that acetylation of histone H3 tails affects SWI/SNF (mating type switching/ sucrose non fermenting) and RSC (remodels structure of chromatin) remodeling in several distinct ways. Acetylation of the histone H3 N-terminal tail facilitated recruitment and nucleosome mobilization by the ATP-dependent chromatin remodelers SWI/SNF and RSC. Tetra-acetylated H3, but not tetra-acetylated H4 tails, increased the affinity of RSC and SWI/SNF for nucleosomes while also changing the subunits of SWI/SNF that interact with the H3 tail. The enhanced recruitment of SWI/SNF due to H3 acetylation is bromodomain dependent, but is not further enhanced by additional bromodomains found in RSC. The combined effect of H3 acetylation and transcription activators is greater than either separately which suggests they act in parallel to recruit SWI/SNF. Besides enhancing recruitment, H3 acetylation increased nucleosome mobilization and H2A/H2B displacement by RSC and SWI/SNF in a bromodomain dependent manner and to a lesser extent enhanced ATP hydrolysis independent of bromodomains. H3 and H4 acetylation did not stimulate disassembly of adjacent nucleosomes in short arrays by SWI/SNF or RSC. These data illustrate how histone acetylation modulates RSC and SWI/SNF function, and provide a mechanistic insight into their collaborative efforts to remodel chromatin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201869PMC
http://dx.doi.org/10.1093/nar/gkr535DOI Listing

Publication Analysis

Top Keywords

rsc swi/snf
12
acetylation
9
swi/snf
9
acetylation modulates
8
histone acetylation
8
atp-dependent chromatin
8
chromatin remodeling
8
acetylation histone
8
nucleosome mobilization
8
swi/snf rsc
8

Similar Publications

Transcriptional activation domains interact with ATPase subunits of yeast chromatin remodelling complexes SWI/SNF, RSC and INO80.

Curr Genet

September 2024

Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.

Chromatin remodelling complexes (CRC) are ATP-dependent molecular machines important for the dynamic organization of nucleosomes along eukaryotic DNA. CRCs SWI/SNF, RSC and INO80 can move positioned nucleosomes in promoter DNA, leading to nucleosome-depleted regions which facilitate access of general transcription factors. This function is strongly supported by transcriptional activators being able to interact with subunits of various CRCs.

View Article and Find Full Text PDF

Nucleosome remodeler exclusion by histone deacetylation enforces heterochromatic silencing and epigenetic inheritance.

Mol Cell

September 2024

Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects.

View Article and Find Full Text PDF

Extra-chromosomal selfish DNA elements can evade the risk of being lost at every generation by behaving as chromosome appendages, thereby ensuring high fidelity segregation and stable persistence in host cell populations. The yeast 2-micron plasmid and episomes of the mammalian gammaherpes and papilloma viruses that tether to chromosomes and segregate by hitchhiking on them exemplify this strategy. We document for the first time the utilization of a SWI/SNF-type chromatin remodeling complex as a conduit for chromosome association by a selfish element.

View Article and Find Full Text PDF

Loops and the activity of loop extrusion factors constrain chromatin dynamics.

Mol Biol Cell

July 2023

Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511.

The chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes.

View Article and Find Full Text PDF

Transcriptional regulation of autophagy by chromatin remodeling complex and histone variant.

Autophagy

October 2023

State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei, China.

Autophagy is a catabolic process to maintain homeostasis, and involved in cell differentiation and development. Autophagy is tightly regulated in response to nutrient availability but the underlying mechanism is not completely understood. Recently, we identified the chromatin remodeling complex INO80 (inositol-requiring mutant 80) and histone variant H2A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!