Clinical data have shown that survival rates vary considerably among brain tumor patients, according to the type and grade of the tumor. Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS (1)H NMRS) can provide important information on tumor biology and metabolism. These metabolic fingerprints can then be used for tumor classification and grading, with great potential value for tumor diagnosis. We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies, including two astrocytomas (grade I), 12 astrocytomas (grade II), eight anaplastic astrocytomas (grade III), three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS (1)H NMRS. The results were correlated with pathological features using multivariate data analysis, including principal component analysis (PCA). There were significant differences in the levels of N-acetyl-aspartate (NAA), creatine, myo-inositol, glycine and lactate between tumors of different grades (P<0.05). There were also significant differences in the ratios of NAA/creatine, lactate/creatine, myo-inositol/creatine, glycine/creatine, scyllo-inositol/creatine and alanine/creatine (P<0.05). A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%. HRMAS (1)H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11427-011-4193-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!