Members of tripartite motif (TRIM) proteins in mammals play important roles in multiple cellular processes in the immune system. In the present study we have obtained the chicken TRIM39 with the insertion of a base A at position 1006 bp, compared to the sequence in the NCBI database (Accession No: NM 001006196), which made TRIM39 fulfill the TRIM rule of domain composition with both PRY, and SPRY domains. The open reading frame consisted of 1392 bp encoding 463 amino acid residues. The amino acid sequences of TRIM39 protein in mammals were highly similar (from 91.48% to 99.61%), while chicken TRIM39 had relatively low homology with mammals (from 29.2% to 39.59%). Real time RT-PCR indicated that the mRNA expression level of TRIM39 was the highest in spleen, with a lower expression in liver, brain, and lung, suggesting it might be an important protein participating in the immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131591PMC
http://dx.doi.org/10.3390/ijms12063797DOI Listing

Publication Analysis

Top Keywords

tripartite motif
8
immune system
8
chicken trim39
8
amino acid
8
trim39
5
molecular characterization
4
characterization expression
4
expression pattern
4
pattern tripartite
4
motif protein
4

Similar Publications

Cell surface proteins determine how cells interact with their biotic and abiotic environments. In social myxobacteria, a C-terminal protein sorting tag called MYXO-CTERM is universally found within the Myxococcota phylum, where their genomes typically contain dozens of proteins with this motif. MYXO-CTERM harbors a tripartite architecture: a short signature motif containing an invariant cysteine, followed by a transmembrane helix and a short arginine-rich C-terminal region localized in the cytoplasm.

View Article and Find Full Text PDF

Protein-energy wasting (PEW) facilitates major adverse clinical outcomes in chronic renal failure (CRF), with current therapies not suitable for all patients. Faecalibacterium prausnitzii (F. prausnitzii) can alleviate chronic kidney disease, with unclear effects and mechanisms on CRF with PEW.

View Article and Find Full Text PDF

Di-(2-ethylhexyl)-phthalate disrupts mouse placental growth by regulating the cell cycle of mouse placental trophoblasts through the Trim38-p53 signaling axis.

FASEB J

March 2025

Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.

Di-(2-ethylhexyl)-phthalate (DEHP) is a common endocrine disruptor that causes very serious environmental pollution. Recent studies have described that DEHP exerts detrimental effects on key processes of placental development, including implantation, differentiation, invasion, and angiogenesis. However, its effects on the proliferation of placental trophoblasts and related regulatory mechanisms remain elusive.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a critical RNA quality control system in eukaryotes, also playing a role in defending against viral infections. However, research has primarily focused on nonsegmented viruses. To investigate the interaction between NMD and segmented RNA viruses, we used cucumber mosaic virus (CMV), which possesses a tripartite, single-stranded, positive-sense RNA genome.

View Article and Find Full Text PDF

Background: Ventilator-induced diaphragmatic dysfunction (VIDD) significantly affects the prognosis of critically ill patients and has attracted considerable attention. Tripartite motif-containing protein 63 (TRIM63) plays a pivotal role in muscle protein degradation and muscle mass regulation. Its overexpression is closely associated with VIDD; however, data on the specific effects of TRIM63 on this pathological process remain insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!