Performance improvement of GaN-based light-emitting diodes grown on patterned Si substrate transferred to copper.

Opt Express

Photonics Technology Center, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Published: July 2011

LEDs on Si offer excellent potential of low cost manufacturing for solid state lighting and display, taking advantage of the well-developed IC technologies of silicon. In this paper, we report how the performance of LEDs grown on Si can be improved. Multiple quantum well InGaN LED structure was grown on patterned silicon substrates and circular LEDs 160 µm in radius were processed. Fabricated LEDs were then transferred to an electroplated copper substrate with a reflective mirror inserted by a double-flip transfer process, to improve the light extraction efficiency and heat dissipation. The light output power of LEDs on copper increased by ~80% after the transfer. The operating current before the onset of light output power saturation also increased by 25% because of the good thermal conductivity of copper. The light output power of packaged LEDs on copper was 6.5 mW under 20 mA current injection and as high as 14 mW driven at 55 mA.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.00A956DOI Listing

Publication Analysis

Top Keywords

light output
12
output power
12
grown patterned
8
leds copper
8
leds
6
copper
5
performance improvement
4
improvement gan-based
4
gan-based light-emitting
4
light-emitting diodes
4

Similar Publications

Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.

View Article and Find Full Text PDF

Optimized preparation of alginate/nanocellulose/polypyrrole composite hydrogel via in-situ polymerization for high-efficiency solar desalination and wastewater purification.

Chemosphere

January 2025

School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea. Electronic address:

In the field of solar steam generation, hydrogels with interfacial evaporation configurations stand as a promising candidate for solar evaporators. Hydrogel-based photothermal materials provide excellent hydration channels for supplying water to an evaporative layer due to their porous structure and hydrophilic nature. This work proposed a facile and in-situ fabrication of sodium alginate hydrogel incorporated with cellulose nanocrystals and polypyrrole as an effective photothermal material.

View Article and Find Full Text PDF

Objectives: To evaluate the effectiveness of an MRI radiomics stacking ensemble learning model, which combines T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) with deep learning-based automatic segmentation, for preoperative prediction of the prognosis of high-intensity focused ultrasound (HIFU) ablation of uterine fibroids.

Methods: This retrospective study collected data from 360 patients with uterine fibroids who underwent HIFU treatment. The dataset was sourced from Center A (training set: N = 240; internal test set: N = 60) and Center B (external test set: N = 60).

View Article and Find Full Text PDF

Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking.

View Article and Find Full Text PDF

Solvent induced method for preparation of multi-advantage carrageenan films.

Int J Biol Macromol

January 2025

Department of Pharmacy, Fujian Vocational College of Bioengineering, Fuzhou 350000, China. Electronic address:

Carrageenan has good film-forming characteristics, but it is difficult to simultaneously improve its multiple performances, such as water-resistance, light transmittance and thermal stability. In this study, multi-advantage composite films were prepared by iota-carrageenan and quaternary ammonium surfactants according to solvent induced method. The weight change, FTIR and thermogravimetric analyses of the films before and after solvent inducement indicated that the inorganic counterions of iota-carrageenan were replaced by quaternary ammonium ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!