Very uniform 2 μm-pitch square microlens arrays (μLAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by ~100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the μLA is ~15 × 15 mm(2), i.e., much larger than the ~3 × 3 mm(2) OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by ~100%. Similarly, a 19 × 25 mm(2) μLA enhances the EL extracted from a 3 × 3 array of 2 × 2 mm(2) OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a ~140% enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.00A786DOI Listing

Publication Analysis

Top Keywords

holographic interference
8
interference lithography
8
light extraction
8
oled pixel
8
mm2 oled
8
soft holographic
4
lithography microlens
4
microlens enhanced
4
enhanced organic
4
organic light
4

Similar Publications

The holographic technique is one of the simplest methods for designing antennas based on metasurface. This paper presents a spoof surface plasmon polariton (SSPP) leaky-wave antenna (LWA) based on the concept of impedance modulated metasurfaces by the anisotropic holographic technique. Instead of parasitic elements, anisotropic SSPP elements are exploited to achieve radiation with circular polarization.

View Article and Find Full Text PDF

The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.

View Article and Find Full Text PDF

The use of wavefront shaping has found extensive application to develop ultra-thin endoscopic techniques based on multimode optical fibers (MMF), leveraging on the ability to control modal interference at the fiber's distal end. Although several techniques have been developed to achieve MMF-based laser-scanning imaging, the use of short laser pulses is still a challenging application. This is due to the intrinsic delay and temporal broadening introduced by the fiber itself, which requires additional compensation optics on the reference beam during the calibration procedure.

View Article and Find Full Text PDF

Holographic multiplexing metasurface with twisted diffractive neural network.

Nat Commun

October 2024

ZJU-UIUC Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, 310027, China.

As the cornerstone of AI generated content, data drives human-machine interaction and is essential for developing sophisticated deep learning agents. Nevertheless, the associated data storage poses a formidable challenge from conventional energy-intensive planar storage, high maintenance cost, and the susceptibility to electromagnetic interference. In this work, we introduce the concept of metasurface disk, meta-disk, to expand the capacity limits of optical holographic storage by leveraging uncorrelated structural twist.

View Article and Find Full Text PDF

A spatially distributed low-cross talk vector beam refers to a vector beam that exhibits different intensities, phases, and polarization states along the propagation direction. This type of vector beam features low-cross talk between beams on different planes and finds extensive applications in optical communications and related fields. However, current technologies face challenges such as intensity interference at different imaging planes and difficulties in the precise control of phases and polarization states, which affect beam quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!