Different designs for producing multiple stopband mesoporous silicon rugate filters via electrochemical anodization are compared. The effects of light absorption and dispersion to visible range filter design are investigated. Thermal oxidation is applied for passivating the chemically reactive porous silicon surface, and the response of the passivated structures to ethanol vapor is examined. Differences in gas sensing properties for the various designs are evaluated and possible reasons for the observed differences are discussed. Methods for sidelobe suppression in multipeak filters are discussed and demonstrated, and their effects in gas sensing applications are estimated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.013291DOI Listing

Publication Analysis

Top Keywords

gas sensing
12
mesoporous silicon
8
silicon rugate
8
rugate filters
8
structural considerations
4
considerations multistopband
4
multistopband mesoporous
4
filters prepared
4
prepared gas
4
sensing purposes
4

Similar Publications

Luminescent lanthanide compounds stand out for their distinctive characteristics including narrow emission bands, substantial Stokes shifts, high quantum yields, and unique luminescent colors. However, Ln is highly susceptible to vibrational quenching from X-H (X = O/N) high-energy oscillators in the embedded organic antenna, resulting in significant nonradiative energy dissipation of the D excited states of Ln. Herein, we introduce a strategy based on supramolecular interactions to modulate the nonradiative transitions in a new Zn-Tb heterometallic compound, [ZnTb(HL)(NO)Cl]·2CHCN·HO (), based on a phenyl-substituted pyrazolinone-modified salicylamide-imide ligand ().

View Article and Find Full Text PDF

Insights into the adsorption mechanisms of VOCs molecules on non-oxidized and oxidized SnO (110) monolayer: DFT analysis.

J Mol Model

January 2025

Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.

Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.

View Article and Find Full Text PDF

A Wearable Prototype Measuring PtcCO and SpO.

IEEE Biomed Circuits Syst Conf

October 2024

Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA.

The proper functioning of the respiratory system is evaluated by monitoring the exchange of blood oxygen and carbon dioxide. While wearable devices for monitoring both blood oxygen and carbon dioxide are emerging, wearable carbon dioxide monitors remain relatively rare. This paper introduces a novel wearable prototype that integrates the measurement of transcutaneous carbon dioxide and peripheral blood oxygen saturation on a miniaturized custom-designed printed circuit board.

View Article and Find Full Text PDF

Optoelectronic synapse devices (OESDs) inspired by human visual systems enable to integration of light sensing, memory, and computing functions, greatly promoting the development of in-sensor computing techniques. Herein, dual-mode integration of bipolar response photodetectors (PDs) and artificial optoelectronic synapses based on ZnO/SnSe heterojunctions are presented. The function of the fabricated device can be converted between the PDs and OESDs by modulating the light intensity.

View Article and Find Full Text PDF

An intelligent humidity sensing system has been developed for real-time monitoring of human behaviors through respiration detection. The key component of this system is a humidity sensor that integrates a thermistor and a micro-heater. This sensor employs porous nanoforests as its sensing material, achieving a sensitivity of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!