Development of micro-flow hydrothermal monitoring systems and their applications to the origin of life study on Earth.

Anal Sci

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Naka, Sakai, Japan.

Published: November 2011

AI Article Synopsis

  • Continuous research on thermophilic organisms indicates that life may have originated in hydrothermal systems on early Earth, highlighting the importance of studying hydrothermal reactions in the context of life's origins.
  • Recent investigations have led to the development of advanced real-time and in situ monitoring systems focused on hydrothermal reactions, which are beneficial not only for understanding the origin of life but also have practical applications.
  • These innovative techniques utilize a narrow tubing flow reactor to rapidly heat samples at high temperatures (up to 400°C), allowing for monitoring on a millisecond to second scale, facilitating significant studies on hydrothermal processes relevant to the origin of life.

Article Abstract

Continuous extensive studies on thermophilic organisms have suggested that life emerged on hydrothermal systems on primitive Earth. Thus, it is well known that hydrothermal reactions are, therefore, very important to study fields deeply related to the origin-of-life study. Furthermore, the importance of hydrothermal and solvothermal systems is now realized in both fundamental and practical areas. Here, our recent investigations are described for the development of real-time and in situ monitoring systems for hydrothermal reactions. The systems were primarily developed for the origin-of-life study, but it was also applicable to fundamental and practical areas. The present techniques are based on the concept that a sample solution is injected to a narrow tubing flow reactor at high temperatures, where the sample is rapidly heated up in a very short time by exposure at to a high-temperature narrow tubing flow reactor with a very short time scale. This enables millisecond to second time-scale monitoring in real time and/or in situ at temperatures of up to 400°C. By using these techniques, a series of studies on the hydrothermal origin-of-life have been successfully carried out.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.27.675DOI Listing

Publication Analysis

Top Keywords

monitoring systems
8
hydrothermal reactions
8
origin-of-life study
8
fundamental practical
8
practical areas
8
narrow tubing
8
tubing flow
8
flow reactor
8
short time
8
hydrothermal
6

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.

View Article and Find Full Text PDF

Effects of urban sprawl due to migration on spatiotemporal land use-land cover change: a case study of Bartın in Türkiye.

Sci Rep

January 2025

Department of Forest Engineering, Faculty of Forestry, Kastamonu University, Kastamonu, Türkiye, Turkey.

Rapid urban growth is a subject of worldwide interest due to environmental problems. Population growth, especially migration from rural to urban areas, leads to land use and land cover (LULCC) changes in urban centres. Therefore, LULCC and urban growth analyses are among the studies that will help decision-makers achieve better sustainable management and planning.

View Article and Find Full Text PDF

Research on the high precision hydraulic column stress monitoring method.

Sci Rep

January 2025

Shandong Yankuang Intelligent Manufacturing Co., Jining, 272000, China.

The hydraulic column is a core component in the coal mine support system, however, the real-time monitoring of the hydraulic column during the service process of the hydraulic support faces challenges. To address these issues, a high-precision stress mapping method of hydraulic column is proposed. The hydraulic column loss function was constructed to guide the data-driven model training, and the cylinder stress mechanism model was established by using the elastic-plastic theory of thick-walled cylinder.

View Article and Find Full Text PDF

Purpose: Subclinical peroneal neuropathy without overt foot drop has been linked to increased fall risk in adults, yet remains under reported due to subtle symptoms and lack of awareness. Patients with carpal tunnel syndrome (CTS) often experience other nerve entrapments, prompting this study to evaluate CTS (a proxy for peroneal nerve entrapment) as a significant predictor of time to first fall.

Methods: Data from the Merative MarketScan Research Databases (2007-2021) were used to identify adult patients using ICD-9/10 codes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!