PSD-95, a principal scaffolding component of the postsynaptic density, is targeted to synapses by palmitoylation, where it couples NMDA receptor stimulation to production of nitric oxide (NO) by neuronal nitric oxide synthase (nNOS). Here, we show that PSD-95 is physiologically S-nitrosylated. We identify cysteines 3 and 5, which are palmitoylated, as sites of nitrosylation, suggesting a competition between these two modifications. In support of this hypothesis, physiologically produced NO inhibits PSD-95 palmitoylation in granule cells of the cerebellum, decreasing the number of PSD-95 clusters at synaptic sites. Further, decreased palmitoylation, as seen in heterologous cells treated with 2-bromopalmitate or in ZDHHC8 knockout mice deficient in a PSD-95 palmitoyltransferase, results in increased PSD-95 nitrosylation. These data support a model in which NMDA-mediated production of NO regulates targeting of PSD-95 to synapses via mutually competitive cysteine modifications. Thus, differential modification of cysteines may represent a general paradigm in signal transduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181141PMC
http://dx.doi.org/10.1016/j.neuron.2011.05.033DOI Listing

Publication Analysis

Top Keywords

psd-95
8
targeting psd-95
8
nitric oxide
8
s-nitrosylation s-palmitoylation
4
s-palmitoylation reciprocally
4
reciprocally regulate
4
regulate synaptic
4
synaptic targeting
4
psd-95 psd-95
4
psd-95 principal
4

Similar Publications

The gut-brain axis is a bidirectional communication pathway that modulates cognitive function. A dysfunctional gut-brain axis has been associated with cognitive impairments during aging. Therefore, we propose evaluating whether modulation of the gut microbiota through fecal microbiota transplantation (FMT) from young-trained donors (YT) to middle-aged or aged mice could enhance brain function and cognition in old age.

View Article and Find Full Text PDF

Mutations in the Transcription Factor 20 (TCF20) have been identified in patients with autism spectrum disorders (ASDs), intellectual disabilities (IDs), and other neurological issues. Recently, a new syndrome called TCF20-associated neurodevelopmental disorders (TAND) has been described, with specific clinical features. While TCF20's role in the neurogenesis of mouse embryos has been reported, little is known about its molecular function in neurons.

View Article and Find Full Text PDF

Background: Cerebral palsy (CP) is a neurodevelopmental disorder and motor disorder syndrome. It has been confirmed that mesenchymal stem cells (MSCs) and mouse nerve growth factor (mNGF) can repair brain tissue damage and nerve injury; however, exosomes derived from healthy cells may have a comparable therapeutic potential as the cells themselves.

Objectives: The purpose of this study was to explore the improvement effect of human umbilical cord mesenchymal stem cell (hUC-MSCs)-derived exosomes on a CP model and determine whether there is a synergistic effect when combined with mNGF.

View Article and Find Full Text PDF

How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses.

View Article and Find Full Text PDF

: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!