The functional roles of the amino acid residues of the Cu(A) site in bovine cytochrome c oxidase (CcO) were investigated by utilizing hybrid quantum mechanics (QM)/molecular mechanics (MM) calculations. The energy levels of the molecular orbitals (MOs) involving Cu d(zx) orbitals unexpectedly increased, as compared with those found previously with a simplified model system lacking the axial Met residue (i.e., Cu(2)S(2)N(2)). This elevation of MO energies stemmed from the formation of the anti-bonding orbitals, which are generated by hybridization between the d(zx) orbitals of Cu ions and the p-orbitals of the S and O atoms of the axial ligands. To clarify the roles of the axial Met ligand, the inner-sphere reorganization energies of the Cu(A) site were computed, with the Met residue assigned to either the QM or MM region. The reorganization energy slightly increased when the Met residue was excluded from the QM region. The existing experimental data and the present structural modeling study also suggested that the axial Met residue moderately increased the redox potential of the Cu(A) site. Thus, the role of the Met may be to regulate the electron transfer rate through the fine modulation of the electronic structure of the Cu(A) "platform", created by two Cys/His residues coordinated to the Cu ions. This regulation would provide the optimum redox potential/reorganization energy of the Cu(A) site, and thereby facilitate the subsequent cooperative reactions, such as the proton pump and the enzymatic activity, of CcO. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2011.06.014 | DOI Listing |
Sci Rep
October 2024
Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, BOKU University, Institute of Bioprocess Science and Engineering, Vienna, Austria.
Protein engineering with non-canonical amino acids (ncAAs) holds great promises for diverse applications, however, there are still limitations in the implementation of this technology at manufacturing scale. The know-how to efficiently produce ncAA-incorporated proteins in a scalable manner is still very limited. In the present study, we incorporated the ncAA N-[(2-azidoethoxy)carbonyl]-L-lysine (Azk) into an antigen binding fragment (Fab) in Escherichia coli.
View Article and Find Full Text PDFACS Chem Biol
July 2024
Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States.
Site-specific noncanonical amino acid (ncAA) mutagenesis in living cells has traditionally relied on heterologous, nonsense-suppressing aminoacyl-tRNA synthetase (aaRS)/tRNA pairs that do not cross-react with their endogenous counterparts. Such heterologous pairs often perform suboptimally in a foreign host cell since they were not evolutionarily optimized to function in the foreign environment. This suboptimal performance restricts the number of ncAAs that can be simultaneously incorporated into a protein.
View Article and Find Full Text PDFSex Transm Infect
August 2024
Infectious Diseases, Hopital de la Croix-Rousse, Lyon, France.
J Biol Inorg Chem
April 2024
Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany.
Copper-containing nitrous oxide reductase catalyzes a 2-electron reduction of the green-house gas NO to yield N. It contains two metal centers, the binuclear electron transfer site Cu, and the unique, tetranuclear Cu center that is the site of substrate binding. Different forms of the enzyme were described previously, representing variations in oxidation state and composition of the metal sites.
View Article and Find Full Text PDFDrug Resist Updat
November 2023
Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
Pdr5 is a founding member of a large (pdr) subfamily of clinically and agriculturally significant fungal ABC transporters. The tremendous power of yeast genetics combined with biochemical and structural approaches revealed the astonishing asymmetry of this efflux pump. Asymmetry is manifested in Pdr5's ATP-binding sites, drug binding sites, signal transformation interface, and molecular exit gate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!