Cholesterol: recapitulation of its active role during liver regeneration.

Liver Int

Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF Mexico.

Published: October 2011

Liver regeneration is a compensatory hyperplasia produced by several stimuli that promotes proliferation in order to provide recovery of the liver mass and architecture. This process involves complex signalling cascades that receive feedback from autocrine and paracrine pathways, recognized by parenchymal as well as non-parenchymal cells. Nowadays the dynamic role of lipids in biological processes is widely recognized; however, a systematic analysis of their importance during liver regeneration is still missing. Therefore, in this review we address the role of lipids including the bioactive ones such as sphingolipids, but with special emphasis on cholesterol. Cholesterol is not only considered as a structural component but also as a relevant lipid involved in the control of the intermediate metabolism of different liver cell types such as hepatocytes, hepatic stellate cells and Kupffer cells. Cholesterol plays a significant role at the level of specific membrane domains, as well as modulating the expression of sterol-dependent proteins. Moreover, several enzymes related to the catabolism of cholesterol and whose activity is down regulated are related to the protection of liver tissue from toxicity during the process of regeneration. This review puts in perspective the necessity to study and understand the basic mechanisms involving lipids during the process of liver regeneration. On the other hand, the knowledge acquired in this area in the past years, can be considered invaluable in order to provide further insights into processes such as general organogenesis and several liver-related pathologies, including steatosis and fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1478-3231.2011.02542.xDOI Listing

Publication Analysis

Top Keywords

liver regeneration
16
order provide
8
role lipids
8
liver
7
cholesterol
5
regeneration
5
cholesterol recapitulation
4
recapitulation active
4
role
4
active role
4

Similar Publications

Targeted Therapy for Severe Sjogren's Syndrome: A Focus on Mesenchymal Stem Cells.

Int J Mol Sci

December 2024

Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.

Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by the infiltration of lymphocytes on salivary and lacrimal glands, resulting in their dysfunction. Patients suffering from severe pSS have an increased risk of developing multi-organ dysfunction syndrome due to the development of systemic inflammatory response, which results in immune cell-driven injury of the lungs, kidneys, liver, and brain. Therapeutic agents that are used for the treatment of severe pSS encounter various limitations and challenges that can impact their effectiveness.

View Article and Find Full Text PDF

This study demonstrates the effectiveness of propidium iodide as a reliable marker for detecting dead or dying cells in frozen liver tissue sections. By comparing propidium iodide staining with the widely used Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, both methods showed consistent results in disease models such as alcohol-induced fibrosis and Western diet-induced fatty liver. Additionally, propidium iodide was successfully co-stained with other fluorescent markers, like phalloidin (for actin filaments) and antibodies targeting collagen, enabling detailed spatial analysis of dying cells within tissue.

View Article and Find Full Text PDF

Chronic liver disease is characterised by persistent inflammation, tissue damage, and regeneration, which leads to steatosis, fibrosis, and, lastly, cirrhosis and hepatocellular carcinoma (HCC). HCC, the most prevalent form of primary liver cancer, is one of the leading causes of cancer-related mortality worldwide. The gut microbiota plays a fundamental role in human physiology, and disturbances in its critical balance are widely recognised as contributors to various pathological conditions, including chronic liver diseases, both infectious and non-infectious in nature.

View Article and Find Full Text PDF

Hedgehog Signaling Pathway in Fibrosis and Targeted Therapies.

Biomolecules

November 2024

Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China.

Hedgehog (Hh) signaling is a well-established developmental pathway; it is crucial for early embryogenesis, cell differentiation, and damage-driven regeneration. It is being increasingly recognized that dysregulated Hh signaling is also involved in fibrotic diseases, which are characterized by excessive extracellular matrix deposition that compromises tissue architecture and function. As in-depth insights into the mechanisms of Hh signaling are obtained, its complex involvement in fibrosis is gradually being illuminated.

View Article and Find Full Text PDF

Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!