A selected multireference configuration interaction (CI) method and the corresponding code are presented. It is based on a procedure of localization that permits to obtain well localized occupied and virtual orbitals. Due to the local character of the electron correlation, using local orbitals allows one to neglect long range interactions. In a first step, three topological matrices are constructed, which determine whether two orbitals must be considered as interacting or not. Two of them concern the truncation of the determinant basis, one for occupied/virtual, the second one for dispersive interactions. The third one concerns the truncation of the list of two electron integrals. This approach permits a fine analysis of each kind of approximation and induces a huge reduction of the CI size and of the computational time. The procedure is tested on linear polyene aldehyde chains, dissociation potential energy curve, and reaction energy of a pesticide-Ca(2+) complex and finally on transition energies of a large iron system presenting a light-induced excited spin-state trapping effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3600351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!