The addition of an [X](+) electrophile to the five-coordinate oxorhenium(V) anion [Re(V)(O)(ap(Ph))(2)](-) {[ap(Ph)](2-) = 2,4-di-tert-butyl-6-(phenylamido)phenolate} gives new products containing Re-X bonds. The Re-X bond-forming reaction is analogous to oxo transfer to [Re(V)(O)(ap(Ph))(2)](-) in that both are 2e(-) redox processes, but the electronic structures of the products are different. Whereas oxo addition to [Re(V)(O)(ap(Ph))(2)](-) yields a closed-shell [Re(VII)(O)(2)(ap(Ph))(2)](-) product of 2e(-) metal oxidation, [Cl](+) addition gives a diradical Re(VI)(O)(ap(Ph))(isq(Ph))Cl product ([isq(Ph)](•-) = 2,4-di-tert-butyl-6-(phenylimino)semiquinonate) with 1e(-) in a Re d orbital and 1e(-) on a redox-active ligand. The differences in electronic structure are ascribed to differences in the π basicity of [O](2-) and Cl(-) ligands. The observation of ligand radicals in Re(VI)(O)(ap(Ph))(isq(Ph))X provides experimental support for the capacity of redox-active ligands to deliver electrons in other bond-forming reactions at [Re(V)(O)(ap(Ph))(2)](-), including radical additions of O(2) or TEMPO(•) to make Re-O bonds. Attempts to prepare the electron-transfer series monomers between Re(VI)(O)(ap(Ph))(isq(Ph))X and [Re(V)(O)(ap(Ph))(2)](-) yielded a symmetric bis(μ-oxo)dirhenium complex. Formation of this dimer suggested that Re(VI)(O)(ap(Ph))(isq(Ph))Cl may be a source of an oxyl metal fragment. The ability of Re(VI)(O)(ap(Ph))(isq(Ph))Cl to undergo radical coupling at oxo was revealed in its reaction with Ph(3)C(•), which affords Ph(3)COH and deoxygenated metal products. This reactivity is surprising because Re(VI)(O)(ap(Ph))(isq(Ph))Cl is not a strong outer-sphere oxidant or oxo-transfer reagent. We postulate that the unique ability of Re(VI)(O)(ap(Ph))(isq(Ph))Cl to effect oxo transfer to Ph(3)C(•) arises from symmetry-allowed mixing of a populated Re≡O π bond with a ligand-centered [isq(Ph)](•-) ligand radical, which gives oxyl radical character to the oxo ligand. This allows the closed-shell oxo ligand to undergo a net 2e(-) oxo-transfer reaction to Ph(3)C(•) via kinetically facile redox-active ligand-mediated radical steps. Harnessing intraligand charge transfer for radical reactions at closed-shell oxo ligands is a new strategy to exploit redox-active ligands for small-molecule activation and functionalization. The implications for the design of new oxidants that utilize low-barrier radical steps for selective multielectron transformations are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic200923q | DOI Listing |
Acc Chem Res
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).
View Article and Find Full Text PDFDalton Trans
January 2025
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Facultad de Química, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, 41092 Sevilla, Spain.
Redox-active ligands provide alternative reaction pathways by facilitating redox events. Among these, tridentate bis(piridylimino)isoindole (BPI) fragments offer great potential, though their redox-active behaviour remains largely underdeveloped. We describe herein a family of BPI germanium(II) complexes and the study of their redox properties.
View Article and Find Full Text PDFChem Sci
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University 5268 Renmin Street Changchun 130024 P. R. China
Two-dimensional conductive metal-organic frameworks (2D c-MOFs) with high electrical conductivity and tunable structures hold significant promise for applications in metal-ion batteries. However, the construction of 3D interpenetrated c-MOFs for applications in metal-ion batteries is rarely reported. Herein, a 3D four-fold interpenetrated c-MOF (Cu-DBC) constructed by conjugated and contorted dibenzo[,]chrysene-2,3,6,7,10,11,14,15-octaol (DBC) ligands is explored as an advanced cathode material for sodium-ion batteries (SIBs) for the first time.
View Article and Find Full Text PDFChem Asian J
January 2025
Indian Institute of Technology Guwahati, Department of Chemistry, Department of Chemistry, 781039, Guwahati, INDIA.
Fulfilment of energy demand by utilizing renewable energy sources that do not contribute to the production of greenhouse gases is a step forward in mitigating global warming. However, with the energy sources being intermittent in nature, renewable energy needs to be stored effectively on a grid scale. In this context, the development of redox-flow batteries has emerged as a promising technology where charging and discharging processes are accomplished by the redox shuttling of the electrolytes, namely anolytes and catholytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!