Background: Notch pathway signaling has critical roles in differentiation, proliferation, and survival, and has oncogenic or tumor suppressor effects in a variety of malignancies. The goal of this study was to evaluate the effects of Notch activation on human neuroblastoma cells.

Procedure: Quantitative RT-PCR, immunoblots, and immunohistochemistry were used to determine the expression of Notch receptors (Notch1-4), cleaved Notch1 (ICN1), and downstream targets (HES1-5) in human neuroblastoma cell lines and patient tumor samples. Notch pathway signaling was induced using intracellular Notch (ICN1-3) and HES gene constructs or direct culture on Notch ligands. Quantitative methylation-specific PCR was used to quantify methylation of the HES gene promoters, and the effects of treatment with decitabine were measured.

Results: Neuroblastoma cells express varying levels of Notch receptors and low levels of HES genes at baseline. However, no endogenous activation of the Notch pathway was detected in neuroblastoma cell lines or patient tumor samples. Expression of activated Notch intracellular domains and HES gene products led to growth arrest. The HES2 and HES5 gene promoters were found to be heavily methylated in most neuroblastoma lines, and HES gene expression could be induced through treatment with decitabine.

Conclusions: We report that neuroblastoma cell lines express multiple Notch receptors, which are inactive at baseline. Activation of the Notch pathway via ligand binding consistently resulted in growth arrest. HES gene expression appears to be regulated epigenetically and could be induced with decitabine. These findings support a tumor suppressor role for Notch signaling in neuroblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264695PMC
http://dx.doi.org/10.1002/pbc.23202DOI Listing

Publication Analysis

Top Keywords

notch pathway
20
notch
13
growth arrest
12
notch receptors
12
neuroblastoma cell
12
cell lines
12
neuroblastoma
8
pathway signaling
8
tumor suppressor
8
human neuroblastoma
8

Similar Publications

Background: BERIL-1 was a randomized phase 2 study that studied paclitaxel with either buparlisib, a pan-class I PIK3 inhibitor, or placebo in patients with recurrent or metastatic (R/M) head and neck squamous cell cancer (HNSCC). Considering the therapeutic paradigm shift with immune checkpoint inhibitors (ICIs) now approved in the first-line setting, we present an updated immunogenomic analysis of patients enrolled in BERIL-1, including patients with immune-infiltrated tumors.

Objective: The objective of this study was to identify biomarkers predictive of treatment efficacy in the context of the post-ICI therapeutic landscape.

View Article and Find Full Text PDF

Cadmium (Cd) is a widely available metal that has been found to have a role in causing nonalcoholic fatty liver disease (NAFLD). However, the detailed toxicological targets and mechanisms by which Cd causes NAFLD are unknown. Therefore, the present work aims to reveal the main targets of action, cellular processes, and molecular pathways by which cadmium causes NAFLD.

View Article and Find Full Text PDF

[Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.

View Article and Find Full Text PDF

Combined exercise-induced modulation of Notch pathway and muscle quality in senescence-accelerated mice.

Pflugers Arch

January 2025

School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil.

The Notch signaling pathway is crucial for skeletal muscle development, regeneration, inflammation, and aging. This study investigated the association between interleukin-10 (IL-10) and the Notch pathway in C2C12 cells, as well as explored the effects of combined endurance and resistance exercise on the Notch and autophagy pathways in the skeletal muscle of senescence-accelerated mouse-resistant 1 Sedentary (SAMR1 CT), SAMR1 exercised (SAMR1 EX), senescence-accelerated prone mouse 8 Sedentary (SAMP8 CT), and SAMP8 exercised (SAMP8 EX). C2C12 myoblasts were transfected with siIL-10.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!