Informational theories of consciousness: a review and extension.

Adv Exp Med Biol

Department of Electrical Engineering, Imperial College, London SW7 2BT, UK.

Published: November 2011

In recent years a number of people have suggested that there is a close link between conscious experience and the differentiation and integration of information in certain areas of the brain. The balance between differentiation and integration is often called information integration, and a number of algorithms for measuring it have been put forward, which can be used to make predictions about consciousness and to understand the relationships between neurons in a network. One of the key problems with the current information integration measures is that they take a lot of computer processing power, which limits their application to networks of around a dozen neurons. There are also more general issues about whether the current algorithms accurately reflect the consciousness associated with a system. This paper addresses these issues by exploring a new automata-based algorithm for the calculation of information integration. To benchmark different approaches we implemented the Balduzzi and Tononi algorithm as a plugin to the SpikeStream neural simulator, and used it to carry out some preliminary comparisons of the liveliness and Φ measures on simple four neuron networks.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4614-0164-3_12DOI Listing

Publication Analysis

Top Keywords

differentiation integration
8
integration
5
informational theories
4
theories consciousness
4
consciousness review
4
review extension
4
extension years
4
years number
4
number people
4
people suggested
4

Similar Publications

Background: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major clinical challenge, as conventional imaging techniques often necessitate surgical biopsy for accurate diagnosis. Machine learning and deep learning models have shown potential in distinguishing radionecrosis from tumor recurrence.

View Article and Find Full Text PDF

iPSCs can serve as a renewable source of a consistent edited cell product, overcoming limitations of primary cells. While feeder-free generation of clinical grade iPSC-derived CD8 T cells has been achieved, differentiation of iPSC-derived CD4sp and regulatory T cells requires mouse stromal cells in an artificial thymic organoid. Here we report a serum- and feeder-free differentiation process suitable for large-scale production.

View Article and Find Full Text PDF

Multi-omics analysis reveals distinct gene regulatory mechanisms between primary and organoid-derived human hepatocytes.

Dis Model Mech

January 2025

Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.

Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.

View Article and Find Full Text PDF

We recently demonstrated polarisation differential phase contrast microscopy () as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!