It has been known for several decades that cyclic AMP (cAMP), a prototypical second messenger, transducing the action of a variety of G-protein-coupled receptor ligands, has potent immunosuppressive and anti-inflammatory actions. These actions have been attributed in part to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappaB (NF-κB). NF-κB plays a crucial role in switching on the gene expression of a plethora of inflammatory and immune mediators, and as such is one of the master regulators of the immune response and a key target for anti-inflammatory drug design. A number of fundamental molecular mechanisms, contributing to the overall inhibitory actions of cAMP on NF-κB function, are well established. Paradoxically, recent reports indicate that cAMP, via its main effector, the protein kinase A (PKA), also promotes NF-κB activity. Indeed, cAMP actions appear to be highly cell type- and context-dependent. Importantly, several novel players in the cAMP/NF-κB connection, which selectively direct cAMP action, have been recently identified. These findings not only open up exciting new research avenues but also reveal novel opportunities for the design of more selective, NF-κB-targeting, anti-inflammatory drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114830 | PMC |
http://dx.doi.org/10.1007/s00018-011-0757-8 | DOI Listing |
Methods Mol Biol
December 2024
Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
In the emerging field of optogenetics, light-sensitive G-protein coupled receptors (GPCRs) allow for the temporally precise control of canonical cell signaling pathways. Expressing, stimulating, and measuring the activity of light-sensitive GPCRs (e.g.
View Article and Find Full Text PDFBiomed Rep
February 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
G protein-coupled estrogen receptor 1 (GPER1) plays a crucial role in the progression of breast cancer and has emerged as a promising therapeutic target. However, while missense mutations in GPER1 have been detected in breast invasive carcinoma (BIC) samples, the resulting molecular, cellular and pharmacological changes remain unclear. The present study categorized BIC samples from The Cancer Genome Atlas database based on mutation information available in the cBioPortal database.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, P. R. China.
Mechanical ventilation (MV) remains a cornerstone of critical care; however, its prolonged application can exacerbate lung injury, leading to ventilator-induced lung injury (VILI). Although previous studies have implicated ferroptosis in the pathogenesis of VILI, the underlying mechanisms remain unclear. This study investigated the roles of ferritinophagy in ferroptosis subsequent to VILI.
View Article and Find Full Text PDFRMD Open
December 2024
David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
Interstitial lung disease (ILD) associated with rheumatoid arthritis or with connective tissue diseases such as systemic sclerosis can be collectively named systemic autoimmune rheumatic disease-associated ILDs (SARD-ILDs) or rheumatic musculoskeletal disorder-associated ILDs. SARD-ILDs result in substantial morbidity and mortality, and there is a high medical need for effective therapies that target both fibrotic and inflammatory pathways in SARD-ILD. Phosphodiesterase 4 (PDE4) hydrolyses cyclic AMP, which regulates multiple pathways involved in inflammatory processes.
View Article and Find Full Text PDFBiomed Khim
December 2024
Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia.
The phosphorylation reaction, catalyzed by the enzyme protein kinase A (PKA), plays one of the key roles in the work of the glutamatergic system, primarily involved in memory functioning. The analysis of the dynamic behavior of the enzyme-substrate complex allows one to learn the mechanism of the enzymatic reaction. According to the results of classical molecular dynamics calculations followed by hierarchical clustering, the most preferred proton acceptor during the phosphorylation reaction catalyzed by PKA is the carboxyl group of the amino acid residue Asp166; however, the γ-phosphate group of ATP can also act as an acceptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!