A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Theoretical studies on the mechanism and stereoselectivity of Rh(Phebox)-catalyzed asymmetric reductive aldol reaction. | LitMetric

Density functional theory calculations (B3LYP) have been carried out to understand the mechanism and stereochemistry of an asymmetric reductive aldol reaction of benzaldehyde and tert-butyl acrylate with hydrosilanes catalyzed by Rh(Phebox-ip)(OAc)(2)(OH(2)). According to the calculations, the reaction proceeds via five steps: (1) oxidative addition of hydrosilane, (2) hydride migration to carbon-carbon double bond of tert-butyl acrylate, which determines the chirality at C2, (3) tautomerization from rhodium bound C-enolate to rhodium bound O-enolate, (4) intramolecular aldol reaction, which determines the chirality at C3 and consequently the anti/syn-selectivity, and (5) reductive elimination to release aldol product. The hydride migration is the rate-determining step with a calculated activation energy of 23.3 kcal mol(-1). In good agreement with experimental results, the formation of anti-aldolates is found to be the most favorable pathway. The observed Si-facial selectivity in both hydride migration and aldol reaction are well-rationalized by analyzing crucial transition structures. The Re-facial attack transition state is disfavored because of steric hindrance between the isopropyl group of the catalyst and the tert-butyl acrylate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1ob05501aDOI Listing

Publication Analysis

Top Keywords

aldol reaction
16
tert-butyl acrylate
12
hydride migration
12
asymmetric reductive
8
reductive aldol
8
determines chirality
8
rhodium bound
8
aldol
5
reaction
5
theoretical studies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!