In the yeast Saccharomyces cerevisiae, addition of glucose to cells grown under glucose-derepressed conditions induces a transient rise in the intracellular level of cAMP. This modulation requires functional elements of the cAMP-producing pathway, adenylate cyclase, ras proteins and the product of CDC25 gene. To determine whether or not the CDC25 gene product is a transducing element in the signal-transmission pathway leading from glucose to ras adenylate cyclase we have made use of the mutated allele RAS2Ile152 whose gene product uncouples the product of CDC25 from adenylate cyclase, but does not promotes other secondary phenotypes. The transient increase in cAMP is lost in cells lacking a functional CDC25 gene product, although they produce a normal amount of cAMP with the RAS2Ile152 gene. This result demonstrates the requirement of CDC25 for mediation of glucose signal transmission. The fact that cells grow normally on glucose in the absence of glucose-induced cAMP signaling confirms that this signaling pathway is not essential for growth on glucose. To further analyze the role of the CDC25 gene product we have made use of truncated versions of the gene. The results show that the C-terminal part of the gene alone is able to mediate glucose-induced activation of the RAS adenylate cyclase pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1990.tb19386.xDOI Listing

Publication Analysis

Top Keywords

cdc25 gene
20
gene product
20
adenylate cyclase
16
gene
9
saccharomyces cerevisiae
8
product cdc25
8
ras adenylate
8
ras2ile152 gene
8
product
7
cdc25
6

Similar Publications

Background: Gliomas are common aggressive brain tumors with poor prognosis. Dephosphorylation-related biomarkers are in a void in gliomas. This study aims to construct a validated prognostic risk model for dephosphorylation, which will provide new directions for clinical treatment, prognostic assessment, and temozolomide (TMZ) resistance in glioma patients.

View Article and Find Full Text PDF

Candida auris is a growing concern due to its resistance to antifungal drugs, particularly amphotericin B (AMB), detected in 30 to 60% of clinical isolates. However, the mechanisms of AMB resistance remain poorly understood. Here we investigated 441 in vitro- and in vivo-evolved C.

View Article and Find Full Text PDF

Mode of action exploration for prostate epithelial cell injury caused by bisphenol A.

Ecotoxicol Environ Saf

November 2024

Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China. Electronic address:

Bisphenol A (BPA) is a typical food chemical contaminant with various detrimental effects, especially on reproductive system. Male prostate damage is also one of its major adverse health effects, of which mode of action (MOA) remains unclear. This study aims to explore the MOA for prostate toxicity of BPA using human normal prostate epithelial cell RWPE-1 for 28-day human-relevant-level exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Triple-negative breast cancer (TNBC) is difficult to treat due to its aggressive nature and limited effective therapies, prompting the need for new treatments.
  • The study developed dual inhibitors targeting CDC25 and HDACs by combining specific molecular structures, showing that one compound, 18A, was particularly effective against TNBC cells while sparing non-cancerous cells.
  • 18A demonstrated strong cytotoxic effects, inhibited key cell cycle proteins, triggered DNA damage, and induced cell death, highlighting its potential as a promising targeted therapy for TNBC that requires further research.
View Article and Find Full Text PDF

Cell division cycle 25B (CDC25B), a member of the CDC25 phosphatase family, plays a key role in cell cycle regulation. Studies have suggested its carcinogenic potential in various cancers, but the role of CDC25B in the development of hepatocellular carcinoma (HCC) remains poorly understood. The aim of this study was to clarify the role of CDC25B in HCC using bioinformatics and experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!